Curriculum of Diploma Programme

in

Electrical Engineering

J.P. Institute Of Technology

Department of Science, Technology and Technical Education (DSTTE), State Govt. of Bihar

State Board of Technical Education (SBTE), Bihar

Semester - III

Board of	CourseCodes	Course Titles	Teaching & Learning Scheme (Hours/Week)							
Study				Instruction CI)	Lab Instruction — (LI)	Notional Hours (TW+ SL)	Total Hours	Total Credits (C)		
			L	Т			(CI+LI+TW+SL)			
	2420301	Electrical Circuit & Networks	3	-	4	2	9	6		
	2420302	Electrical Measurements and Instrumentation	3	-	4	2	9	6		
	2420303	DC Machines and Transformers	3	-	4	2	9	6		
	2420304	Electrical Power Generation Transmission and Distribution	2	1	-	2	5	4		
	2418305	Python Programming (CE, CSE, AIML, ME, ME (Auto)., ELX, ELX (R), MIE, FTS, CRE, CHE, TE, CACDDM, GT)	3	-	4	2	9	6		
	2420306	Summer Internship – I (After 2 nd Sem) (Common for all programmes)	-	-	2	2	4	2		
	Тс	otal	14	1	18	12	45	30		

Semester – III Teaching & Learning Scheme

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

Semester - III Assessment Scheme

				Assessme	ent Scheme (Mai	·ks)			
Board of		Course Titles	Asses	eory ssment ΓΑ)	Self-Le Asses	n work & Parning Sment VA)	Lab Assessment (LA)		(+TWA+LA)
Study	Course Codes		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
	2420301	Electrical Circuit & Networks	30	70	20	30	20	30	200
	2420302	Electrical Measurements and Instrumentation	30	70	20	30	20	30	200
	2420303	DC Machines and Transformers	30	70	20	30	20	30	200
	2420304	Electrical Power Generation Transmission and Distribution	30	70	20	30	-	-	150
	2418305	Python Programming (CE, CSE, AIML, ME, ME (Auto)., ELX, ELX (R), MIE, FTS, CRE, CHE, TE, CACDDM, GT)	30	70	20	30	20	30	200
	2420306	Summer Internship – I (After 2 nd Sem) (Common for all programmes)	-	-	10	15	10	15	50
	Т	otal	150	350	110	165	90	135	1000

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

• Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

- A) Course Code : 2420301(T2420301/P2420301/S2420301)
 - : Electrical Circuit and Networks
- C) Pre- requisite Course(s)

Course Title

: Basic Electrical Engineering

D) Rationale

B)

Electrical circuits are everywhere starting from simple circuits to giant ones that carry power to our homes. This course deals with basic laws and theorems governing electrical circuits which can be applied to analyze and solve the complex electrical circuits. This course enables the students to measure various electrical quantities/parameters insingle and three phase ac circuits. This course is one of the most important core engineering courses and also a prerequisite to learn the advanced electrical courses and develop skills to apply the principle of DC and AC circuits to trouble shoot electrical circuits. Therefore, after taking this course, the diploma students are expected to analyze and develop mastery over concepts of electrical circuits for effective working as an electrical diploma engineer.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Apply basic laws and analysis techniques to simplify the electrical circuits.
- CO-2 Apply network theorems principles to solve the electrical circuit problems
- **CO-3** Measure electrical quantities in single phase AC circuits.
- **CO-4** Ascertain the resonance condition in a series and parallel RLC circuit and measure 2 port network parameters.
- **CO-5** Measure power and power factor in three phase AC circuits.

F) Suggested Course Articulation Matrix (CAM):

Course				Programr Outcomes(Programme Specific Outcomes* (PSOs)	
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	1	3	2	2	-	2		
CO-2	3	3	2	2	1	2	-		
CO-3	3	2	2	2	3	-	2		
CO-4	3	3	2	2	-	1	-		
CO-5	3	2	3	3	_	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

	Course		Scheme of Study (Hours/Week)								
Board of Study	Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)			
			L	Т							
Electrical	2420301	Electrical									
Engineering		Circuit and	03	-	04	02	09	06			
		Networks									

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

					Assessmen	t Scheme (N	1arks)		
Board of Study		Course Title	Theory Assessmen t(TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
	Course Code		Progressive Theory Assessment (DTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T/
Electrical Engineering	2420301	Electrical Circuit and Networks	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2420301

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs
TSO 1a.	Classify the given components into active and passive.	Unit-1.0 Basics of Electrical Circuits	Number(s) CO1
TSO 1c. TSO 1d. TSO 1e.	 Differentiate between the following: Linear and nonlinear, Unilateral and bilateral, Lumped and distributed parameters, Independent and dependent source Describe the nature of the voltage- current characteristics of the given type of voltage source Reduce the given passive network by using star-delta transformation Determine the equivalent resistance by using star/delta transformation from voltage to current transformation and vice versa. Apply Kirchhoff's Current and Voltage Law to analyze the given electric 	 1.1 Definition of: Linear and non-linear Active and passive components Unilateral and bilateral Lumped and distributed parameters Independent and dependent source 1.2 Concept of open circuit, closed circuit and short circuit, node, branch, mesh and loop 1.3 Star/Delta transformation of passive network 1.4 Source transformation 1.5 Kirchoff's Current Law (KCL) and Kirchoff's Voltage Law (KVL), Applications 1.6 Mesh Analysis and Nodal analysis of networks 1.7 Transient & steady state 1.8 Concept of initial and final conditions in switching circuits, Meaning of t =0-, t =0+, and t = infinite. R, L and C at initial and final 	
TSO 1g.	circuit(s). Apply mesh analysis and nodal analysis to determine the ccurrent and voltage in a given circuit.	conditions	
TSO 1h.	Explain Transient and steady state condition in a given circuit		
TSO 1i.	Determine initial state and steady state of R, L & C in DC Circuit and give its application		
TSO 2b. TSO 2c.	Solve a given complex linear active bilateral electrical circuit/network with multiple source using superposition theorem. Substitute a given complex electrical circuit/network across its load terminals by a equivalent circuit comprising of a voltage source in series with Thevenin's resistance. Simplify a given linear complex electrical circuit/network to an equivalent circuit comprising of current source in parallel with resistance. Transfer supply voltage and output	 Unit-2.0 Network Theorems: 2.1 Superposition theorem and its applications 2.2 Thevenin's theorem and its applications 2.3 Norton'stheorem and its applications 2.4 Reciprocity theorem and its applications 2.5 Maximum power transfer theorem 2.6 Application of theorems to solve DC networks 	CO1, CO2
	current mutually in a linear passive electrical circuit/network by applying reciprocity theorem and also mention its applications Determine the conditions for maximum		
	power transfer across Load Explain the behavior of AC voltage, current	Unit-3.0 Single Phase AC Circuits:	CO3
	and power through pure resistance, pure inductance and pure capacitance with sketches	3.1 Generation of an alternating EMF	

Ma	jor Theory Session Outcomes (TSOs)		Units	Relevant COs			
TSO 3b.	Determine the current and voltage,	3.2	AC circuit quantities: Peak value, RMS and	Number(s)			
	impedance of thegiven series/parallel RL/RC/LC/ RLC circuit		Average value of a Sinusoidal voltage waveform				
TSO 3c.	Determine the active, reactive, apparent power and power factorof the given AC circuit Differentiate the given AC circuit quantities.	3.3	quantity, addition, subtraction, multiplication and division, Conversion from rectangular to polar and vice versa and exponential form				
TSO 3d.	Represent the given AC circuit quantities in complex form.	3.4	Waveforms, phasor diagram and expression of voltage, current and power in pure: Resistance, Inductance, Capacitance				
TSO 3e.	Convert the given AC quantity in rectangular to polar and vice versa and other arithmetic operations.	3.5	AC Series and parallel circuits, Phasor diagrams and impedance triangle				
TSO 3f.	Determine the current and voltage, impedance of the given series/parallel RL/RC/ RLC circuit	3.6	Active, reactive, apparent power with examples, Power factor, lagging, leading and unity power factor, effects of poor power factor, power triangle				
TSO 3g.	Determine the active, reactive, apparent power and power factor of the given AC circuit						
TSO 4a.	Explain the phenomena of resonance in	Uni	it-4.0 Resonance and Two Port Network:	CO3, CO4			
	the given RLC series and parallel circuit with sketches	4.1	Resonance and its importance in electrical circuit	,			
TSO 4b.	Determine the resonant frequency of the given series RLC circuit	4.2	Series & Parallel resonance: Resonant				
TSO 4c.	Explain the significance of quality factor of the given series RLCcircuit.		frequency, Quality factor, bandwidth and selectivity in series & Parallel RLC circuit.				
TSO 4d.	Determine the equivalent impedance and current magnitude of the given parallel RLCcircuit under resonance condition	4.3	Magnification in series and parallel resonant circuit Comparison of series and parallel resonance				
TSO 4e.	Explain 2-port network and classify it.	4.4	and its applications				
TSO 4f.	Determine the Z, Y & T parameter using electrical circuits	4.5	Significance of two port network and its types				
TSO 4g.	Determine the conditions of symmetricity and reciprocity of two port networks	4.6	Open Circuit (Z) parameter, Short Circuit (Y) parameter & Transmission parameter				
		4.7	T and Pie representation of circuits Symmetry and reciprocity of two port network				
TSO 5a.	Explain phase and time displacement of three phases.	Uni	t-5.0 Three phase AC circuits	CO4, CO5			
TSO.5.b	Determine the current drawn by the given three phase balanced load connected in star/delta.	5.1 5.2	Three phase three wire source and three phase four wire source, Phase sequence and				
TSO.5.c	Explain the line and phase relation of		phasor diagram				
TSO.5.d	current /voltage of three phase circuit. Determine the current drawn by the given three phase loads connected in parallel.	5.3 5.4	Line and phase relationship: Star/Delta Three phase load -balanced and				
TSO.5.e	Determine the power and power factor of the given three phase load using two wattmeters	5.5	unbalanced Load Measurement of power in three phase circuits				
TSO.5.f	Determine the power factor of the given type of three phase load connected in parallel using power triangle.						

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420301

Pract	ical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1.	Identify the commonly used components in an electrical circuit.	1.	Identification of components used in the given electrical Circuit	CO1
LSO 1.2.	Measure voltage and current using suitable meters/instruments in the given linear electric circuit.	2.	Measurement of voltage and current in a given linear electrical circuit.	CO1
LSO 1.3.	Measure current and voltage in a given electric circuit by applying Kirchhoff 's Current law.	3.	Measurement of current and voltage in a branch of the given electrical circuit using Kirchhoff's Current Law.	CO1
LSO 1.4.	Measure voltage drop in a closed loop in a given electric circuit by applying Kirchoff's Voltage Law.	4.	Measurement voltage drop in closed loop of the given electrical circuit using Kirchhoff's Voltage Law.	CO1
LSO 1.5.	Connect star connected resistances to its equivalent delta connection and determine the equivalent resistance.	5.	Connection of star connected resistances to its equivalent delta connection to measure the equivalent resistance.	CO1
LSO 1.6.	Connect delta connected resistances to its equivalent Star connection and determine the equivalent resistance.	6.	Connection of delta connected resistances to its equivalent Star connection to measure the equivalent resistance.	CO1
LSO 1.7.	Measure current and voltage of the given electric circuit using mesh analysis technique.	7.	Application of mesh analysis to measure current and voltage of the given electric circuit.	CO1
LSO 1.8.	Measure voltage across a circuit element of a given electric circuit Applying nodal analysis technique.	8.	Application of nodal analysis to measure voltage across a circuit element of a given electric circuit	CO1
LSO 2.1.	Measure current in a branch of the given bilateral multiple source circuit using superposition theorem.	9.	Measurement of current in a branch of the given electrical circuit having two or more input sources using Super position theorem.	CO1, CO2
LSO 2.2.	Determine the circuit parameters of the given network using Thevenin's theorem.	10.	Measurement of load current in the load resistance using Thevenin's theorem in a given circuit.	CO1, CO2
LSO 2.3.	Determine the circuit parameters of the given network using Norton's theorem.	11.	Measurement of load current in the load resistance using Norton's theorem in a given circuit.	CO1, CO2
LSO 2.4.	Measure the value of load resistance for which maximum power is produced in the given electric circuit.	12.	Measurement of the value of load resistance for which maximum power is produced in a given electric circuit.	CO1, CO2
LSO 3.1.	Measure the peak value, RMS value, Period and frequency of a sinusoidal voltage using CRO.	13.	Measurement of peak value, RMS value, Period and frequency of a sinusoidal voltage using CRO.	CO2, CO3
LSO 3.2.	Plot the waveform of voltage and current in a resistive load using CRO.	14.	Waveform of voltage and current in a resistive load.	CO2, CO3
LSO 3.3.	Plot the waveform of voltage and current in a R-L load.	15.	Waveform of voltage and current in a R-L load.	CO2, CO3
LSO 3.4.	Plot the waveform of voltage and current in a R-L-C load.	16.	Waveform of voltage and current in a R- L-C load	CO2, CO3
LSO 3.5.	Measure the voltage, current in a series RLC circuit and calculate power	17.	Measurement of voltage, current, power and power factor in a series RLC circuit	CO2, CO3

Prac	tical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
	and power factor and draw phasor diagram.			
LSO 3.6.	Measure voltage, current, power and power factor in an RLC parallel circuit and draw phasor diagram	18.	Measurement of voltage, current, power and power factor in a RLC parallel circuit	CO2, CO3
LSO 3.7.	Determine the power and power factor in AC circuit using three ammeter method.	19.	Determination of the power and power factor in AC circuit using three ammeter method	CO2, CO3
LSO 4.1.	Determine the current at resonance in a series RLC circuit	20.	Determination of the current in an electric circuit at series resonance.	C03, CO4
LSO 4.2.	Determine the resonance frequency and impedance of the given parallel RLC circuit at resonance	21.	Determination of the resonance frequency and impedance of the given parallel RLC circuit at resonance	C03, CO4
LSO 4.3.	Measure Open Circuit (Z) parameter, Short Circuit (Y) of a two-port network	22.	Measurement of Open Circuit (Z) parameter, Short Circuit (Y) of a two-port network	C03, CO4
LSO 5.1.	Measure the he line/phase current, line voltage/phase voltage for the given three phase loads connected to a three-phase source.	23.	Measurement of the line/phase current, line voltage/phase voltage for the given three phase loads connected to a three- phase source.	CO5
LSO 5.2.	Measure three phase power for the given star connected load.	24.	Measurement of neutral displacement voltage of the given three phase unbalanced load connected to a three- phase source	CO4, CO5
	Measure three phase power for the given star/delta connected load	25.	Measurement of three phase power for the given star/delta connected load	CO4, CO5

- L) Suggested Term Work and Self Learning: S2420301 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - a) Solve simple numerical by applying Kirchoff's laws, mesh analysis and nodal analysis techniques.
 - b) Justify that a diode is a unilateral element and the transmission line is a bilateral element.
 - c) Solve simple numerical by applying various Network theorems.
 - d) Collect information about the ratings of single-phase electrical equipment in kVA and kW in your electrical machine lab.
 - e) Explain the significance and applications of series and parallel resonance.
 - f) Solve simple numerical on Open Circuit (Z) parameter, Short Circuit (Y) parameter & Transmission parameters
 - g) Enumerate the different ways of measuring 3 phase active and reactive power.
 - h) Enumerate the uses of different measurement connections that are possible in three phase systems and their differences.

b. Micro Projects:

- i. Connect two identical battery sources in parallel /series. Find the current flowing through and voltage across given resistor connected as load and verify it theoretically. Also submit the detail report on it.
- ii. Prepare a chart illustrating the principle of transformation of sources.

- iii. Prepare a chart depicting various network theorems studied.
- iv. Build and test an electrical circuit to verify maximum power transfer theorem.
- v. Measure the energy consumed by a single-phase AC circuit by using watt meter and energy meter and compare the results measured.
- vi. Prepare an RC and RL series circuit with a toggle switch and DC source and also plot the voltage/current time response and calculate the time constant

c. Other Activities:

- 1. Seminar Topics:
 - Network theorems and its applications.
 - Compare series resonance with parallel resonance
 - Active, reactive and apparent power with examples
 - Phase sequence Indicator and its working
- 2. Visits: Visit nearby industry/supplier to Collect information about the working of phase sequence indicator available in market.
- 3. Self-learning topics:
 - Compile the rating of the different types of components and materials used in a typical electric circuit. Prepare a chart of the same
 - Explore the practical application of Maximum Power Transfer theorem
 - Compare power factor of a resistive, inductive and capacitive circuit
 - Determine Power factor by different methods
 - Analyse the causes and effects of resonance in a electrical network.
 - Phase sequence indicator and its working.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix			
	Theory Asses	sment (TA)**	Term W	ork Assessm	ent (TWA)	Lab Assessment (LA) [#]		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term \	Nork & Self Assessmer	0	Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)	
	Sem Test			Projects	Activities*			
CO-1	20%	15%	20%	25%	20%	32%	20%	
CO-2	20%	20%	20%	25%	20%	16%	20%	
CO-3	20%	20%	20%	25%	20%	28%	20%	
CO-4	20%	20%	20%	-	20%	12%	20%	
CO-5	20%	25%	20%	25%	20%	12%	20%	
Total	30	70	20	20	10	20	30	
Marks				50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Basics of Electrical Circuits	8	CO1	12	3	5	4
Unit-2.0 Network Theorems	8	CO1, CO2	14	4	5	5
Unit-3.0 Single Phase AC Circuits	10	CO3, CO4	14	4	5	5
Unit-4.0 Resonance and Two Port Network	10	CO3, CO4	14	4	5	5
Unit-5.0 Three Phase AC circuits	12	CO4, CO5	16	5	5	6
Total	48	-	70	20	25	25

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

				PLA/ELA	
S.		Relevant COs	Perfor	rmance	Viva-
No.	Laboratory Practical Titles	Number(s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Identification of components used in the given electrical Circuit	CO1	50	40	10
2.	Measurement of voltage and current in a given linear electrical circuit.	CO1	60	30	10
3.	Measurement of current and voltage in a branch of the given electrical circuit using Kirchhoff's Current Law.	C01	60	30	10
4.	Measurement voltage drop in closed loop of the given electrical circuit using Kirchhoff's Voltage Law.	CO1	60	30	10
5.	Connection of star connected resistances to its equivalent delta connection to measure the equivalent resistance.	CO1	50	40	10
6.	Connection of delta connected resistances to its equivalent Star connection to measure the equivalent resistance.	C01	50	40	10
7.	Application of mesh analysis to measure current and voltage of the given electric circuit.	CO1	50	40	10
8.	Application of nodal analysis to measure voltage across a circuit element of a given electric circuit	CO1, CO2	50	40	10
9.	Measurement of current in a branch of the given electrical circuit having two or more input sources using Super position theorem.	CO1, CO2	50	40	10
10.	Measurement of load current in the load resistance using Thevenin's theorem in a given circuit.	CO1, CO2	40	50	10

		Delevent		PLA/ELA	
S.	Laboratory Practical Titles	Relevant COs	Perfor	mance	Viva-
No.		Number(s)	PRA*	PDA**	Voce
			(%)	(%)	(%)
11.	Measurement of load current in the load resistance using	CO1,	40	50	10
	Norton's theorem in a given circuit.	CO2			
12.	Measurement of the value of load resistance for which maximum power is produced in a given electric circuit.	CO1, CO2	60	30	10
13.	Measurement of peak value, RMS value, Period and	CO1,	50	40	10
15.	frequency of a sinusoidal voltage using CRO.	CO3	50	40	10
14.	Plot the waveform of voltage and current in a resistive	CO1,	50	40	10
	load using CRO.	CO3			
15.	Plot the waveform of voltage and current in a R-L load.	CO1,	50	40	10
		CO3			
16.	Plot the waveform of voltage and current in a R-L-C load	CO1,	50	40	10
		CO3			
17.	Measurement of voltage, current, power and power	CO1,	50	40	10
	factor in a series RLC circuit	CO3			
18.	Measurement of voltage, current, power and power factor	CO1,	45	45	10
	in a RLC parallel circuit	CO3			
19.	Determination of the power and power factor in AC	CO1,	50	40	10
	circuit using three ammeter method	CO3			
20.	Determination of the current in a electric circuit at series	CO3,	50	40	10
	resonance.	CO4			
21.	Determination of the resonance frequency and	CO3,	50	40	10
	impedance of the given parallel RLC circuit at resonance	CO4			
22.	Measurement of Open Circuit (Z) parameter, Short	CO4	50	40	10
	Circuit (Y) of a two-port network				
23.	Measurement of the line/phase current, line	CO1,	60	30	10
	voltage/phase voltage for the given three phase loads connected to a three-phase source.	CO3, CO5			
24.	Measurement of neutral displacement voltage of the	CO5	50	40	10
	given three phase unbalanced load connected to a			-	
	three-phase source				
25.	Measurement of three phase power for the given	CO5	50	40	10
	star/delta connected load				

Legend:

PRA*: Process Assessment PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q)

List of Major Laboratory Equipment, Tools and Software:

S. No. Name of Equipment, Broad Relevant **Tools and Software Experiment/Practical Specifications** Number Passive components; R, L 1,2,9,10,11,12 1. R, L and C of different values and C 2. Bread Board with hookup 1,2 wires 3. DC Ammeter 3,7, 9,10,11,12 0-5/10 A, portable analog PMMC type as per relevant BIS standard 4. 4,8, 9,10,11,12 DC Voltmeter 0-150/300 V, portable analog PMMC type as per relevant BIS standard 5. DC Voltmeter 0-15/30/75 V, portable analog PMMC type as per 3,4,8, 9,10,11,12 relevant BIS standard AC Voltmeter 6, 7, 8, 10 6. 0-75/150/300 V, portable analog MI type as per relevant BIS standard 7. AC Voltmeter 0-150/300/600V portable analog MI type as per relevant BIS standard AC Ammeter 10 8. 0-2.5-5-10 A, portable analog MI type as per relevant **BIS standard** 9. Single phase 18 0/100/300 V, 0,2.5/5 A portable Electrodynamometer wattmeter Digital portable LCR 10. 1,2 Inductance: 0.1 mH to 9999 H, Resolution: 0.1 mH, meter Capacitance: 0.1 pF to 9999 mF, Resolution: 0.1pF Resistance: 0.001 ohm to 1 M ohm, Resolution :0.001W 11. Rheostat Nichrome wire wound rheostat on epoxy test or Class F insulating tube with two fixed and and one sliding contact 0-500 Ohm, 1.2A 0-100 Ohm, 5 A 0-50 Ohm, 10 A 0-350 Ohm. 10 A 0-350 Ohm, 1.5 A **Digital Multimeter** 12. 5,6 5 1/2 digits resolutions with all basic measurement facility like DC Voltage: 200 mV ~ 1000 V, DC Current: 200 μA ~ 10 A, AC Voltage: TrueRMS, 200 mV ~ 750 V, AC Current: True-RMS, 20 mA ~ 10 A, 2-Wire, 4-Wire Resistance: 200 $\Omega \simeq 100 M\Omega$, Capacitance Measurement: 2 nF ~ 10000µF, Frequency Measurement: 20 Hz ~ 1 MHz etc., 0.015% DC Voltage Accuracy. 13. Cathode Ray 13,14,15,16 30 MHz Bandwidth, 2 channel, 20 ns sampling time Oscilloscope 14. **Function Generator** 13,14,15,16 10 HZ to 10 MHZ, 10 Vpp , rise & fall time = 20ns, manual / external triggering 15. Choke coil 0-80 mH, 15 16. Variable choke coil _ 17. Single phase Variac 17,18,19,20,21 0-230V/260V,4A 0-230V/260V,8A

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
18.	Three phase Variac	0-415V/0-460V, 15 Amps	23,24,25

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	A Text book of Electrical Technology, Volume-I	Theraja, B.L.	S. Chand and Co. New Delhi ISBN-10: 8121924405 ISBN-13: 978-8121924405
2.	Network and System	Hussain Ashfaq	Khanna Publishers ISBN-10: 8187522089 ISBN-13: 978-8187522089
3.	Network Analysis	Van Valkenburg	PHI Learning ISBN-10: 9353433126 ISBN-13: 978-9353433123
4.	Networks and Systems	Choudhary D. Roy	NEW AGE; Second edition, 2013 ISBN-10: 9788122427677 ISBN-13: 978-81224276
5.	Electric Circuits and Network	Suresh Kumar, K S	Pearson Education ISBN: 978-8131713907
6.	Schaum's Outline of Electric Circuits (Schaum's Outline Series)	Nahvi, M; Edminister, Joseph	Tata McGraw Hill Education Private Ltd. ISBN: 978-1260011968
7.	Circuit Theory: Analysis and Synthesis	Chakrabarti, Abhijit	Dhanpat Rai & Co ISBN: 978-8177000009
8.	Fundamental of Electric Circuits	Charles K. Alexander, Matthew N.O. Sadiku	McGraw-Hill Education ISBN: 978-1259098598

(b) Online Educational Resources:

- 1. https://nptel.ac.in/courses/108104139
- 2. https://archive.nptel.ac.in/courses/108/104/108104139/
- 3. https://archive.nptel.ac.in/courses/117/106/117106108/
- 4. https://alison.com/course/advanced-diploma-in-basic-electrical-circuits
- 5. https://archive.nptel.ac.in/courses/108/105/108105159/

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. UNSW Handbook on Electric Circuits, 2021
- 2. Introduction to Electric Circuits by Eur Ing RG Powell
- 3. Electric circuits simulation lab manuals

:

A)	Course Code	
B)	Course Title	

- : 2420302(T2420302/P2420302/S2420302)
- : Electrical Measurement and Instrumentation

: Basic Mechanical Engineering, Basic Electrical Engineering

- C) Pre- requisite Course(s)
- D) Rationale

The electrical engineering diploma engineers are expected to measure precisely voltage, current, power, energy, etc. by using different types of meters. Therefore, they should be competent to use, calibrate and maintain different types of electrical and electronics measuring instruments used in the industry and electrical systems. This course being the core course, demands a better understanding of the construction, materials used and principle of operation safe operating procedures of various types of measuring instruments. The students after passing this course should possess the knowledge, skill set not only to use appropriate measuring instruments correctly and precisely but also should be able to maintain the same.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Interpret the basic concepts of measurement and instrumentation for measuring instruments.
- **CO-2** Measure current and voltage in an electrical system.
- **CO-3** Measure power and energy in single and three phase systems.
- **CO-4** Measure resistance, inductance, capacitance using bridges/meters.
- **CO-5** Use various instruments/meters for measuring electrical parameters such as power factor, Phase sequence, circuit components.

F) Suggested Course Articulation Matrix (CAM):

	Programme Outcomes (POs)								ne Specific omes* Os)
Course Outcomes (COs)	PO-1 Basic and Discipline- Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developm entof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	3	2	1	-	2		
CO-2	3	2	2	2	1	1	2		
CO-3	3	2	2	2	2	1	2		
CO-4	3	2	2	2	1	1	2		
CO-5	3	2	3	2	1	2	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

	Course	Scheme of Study (Hours/Week)								
Board of Study	Code	Title	Title Instruc		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
			L	Т						
Electrical Engineering	2420302	Electrical Measurement and Instrumentation	03	-	04	02	09	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

				As	sessment Scl	heme (Marks)		
			Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
Board of Study	Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T/
Electrical Engineering	2420302	Electrical Measurement and Instrumentation	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon thecompletion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Society connect, Multidisciplinary aspects, Indian Knowledge System (IKS) and others need to be integrated.

Semester - III

Theory Session Outcomes (TSOs) and Units: T2420302

Major Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)	
TSO.1.a TSO.1.b TSO.1.c TSO.1.d TSO.1.e	Explain basic concept and significance of measurements. Differentiate between deflecting, controlling and damping torque in an instrument. Explain the given terms related to measuring systems. Classify types of errors in measurement. Classify different types of instruments.	 Unit-1.0 Basics of Measurement and Instrumentation Measuring systems and requirements: Block diagram Deflecting, controlling and damping torque Accuracy, precision, Resolution, tolerance, sensitivity and repeatability Errors in measurement Types of errors- Limiting error, Gross error, systematic Error, Random Error, Guaranteed accuracy error Classification of basic instruments -Indicating, Recording and Integrating type 	CO1	
TSO.2.a	Explain the general principle of measuring current, voltage in an electrical system.	 Unit-2.0 Measurement of Voltage and Current Current and voltage measurement: Principle 	CO2	
TSO.2.b TSO.2.c	Extend the range of ammeter and voltmeter using shunt, multipliers and Current Transformer and Potential Transformer Describe the calibration procedure of	 Galvanometer, Ammeter, Voltmeter Calibration of ammeter and voltmeter Range Extension of ammeter and voltmeter using: 		
TSO.2.d	the given meters. Describe the construction and working principle of the given types of electromechanical measuring instruments.	 Shunts and Multipliers Current Transformer (CT) and Potential Transformer (PT) (Construction, working and applications) Permanent Magnet Moving Coil (PMMC), Moving iron, Induction, Dynamometers 		
TSO.2.e TSO.2.f	Explain the working principle of the given types of electromechanical measuring instruments. Explain the significance of using	 type instruments: Working principle, construction, applications, merits and demerits Essentials and advantages of electronic 		
TSO.2.g	electronic instruments Explain the working of true rms voltmeter with block diagram.	instrumentsTrue RMS reading voltmeter.Digital Voltmeters (DVM) and its types		
TSO.2.h TSO.2.i	Explain the working of DVM with block diagram. Describe working and advantage of digital multi meter with block diagram.	 Digital multimeters- Block diagram 		
TSO.3.a	Explain the general principle of measuring power and energy in an electrical system	Unit-3.0 -Measurement of Power and Energy	CO3	
TSO.3.b	Explain the working of induction and dynamometer type instruments.	Power and energy Measurement: Principle		

Major Theory Session Outcomes (TSOs)		Units	Relevant CO Number(s)	
⁻ SO.3.c ⁻ SO.3.d ⁻ SO.3.e ⁻ SO.3.f ⁻ SO.3.g	Explain the general principle of measuring single and three phase power in an electrical system Apply the power measuring technique in distribution and transmission system. Describe the construction and working of single and 3 phase energy meters Determine errors and compensation in an energy meter. Describe the standard procedure for calibration of the given equipment.	 Measurement of single and three phase power using wattmeter - one wattmeter and two wattmeter method Effect of power factor variation on wattmeter reading in two wattmeter method Measurement of energy using single phase and three phase watt-hour/Energy meter Errors and compensation in energy meter Cripping and phantom loading in energy meters Calibration of watt meters and energy meters Digital energy meter: Block diagram, Working 		
TSO.4.a	Classify the resistance into low,	Unit 4.0-Measurement using Bridges/Meters	CO4	
TSO.4.b TSO.4.c	medium and high. Explain the basic concept of bridge and bridge balancing. Describe the procedure to	 Classification of resistances - Low, Medium and High Concept of bridge, balancing 		
TSO.4.d	measure unknown resistance (low, medium and high) using appropriate bridge/method. Describe the method of using Earth tester to measure earth resistance	 Resistance measurement -Kelvins double bridge (Low), voltmeter - ammeter method, Wheatstone bridge, ohmmeter (Medium) and Megger (High). Earth resistance 		
TSO.4.e	Describe the procedure to measure an unknown inductance by using appropriate bridge	 Inductance measurement – Anderson, Maxwell inductance capacitance bridge Capacitance Measurement- Schering bridge. 		
TSO.4.f	Describe the procedure to measure the unknown Capacitance using appropriate bridge	 Frequency Measurement -Wein bridge, Weston Frequency meter. 		
TSO.4.g	Describe the procedure to measure an unknown frequency by using wein bridge/ Weston Frequency meter.			
TSO.5.a	Describe the procedure to measure the power factor by using P.F meter.	Unit 5– Measurement of Other Electrical Parameters	CO5	
TSO.5.b TSO.5.c	Describe the procedure of using a Phase sequence indicator to determine the phase sequence Explain the use of Synchroscope in	 Synchro scope 		
	synchronization	 CRO-basic clock diagram, Cathode Ray Tube, Electrostatic and magnetic deflection, X & Y 		
TSO.5.d	Describe functions of basic building blocks of CRO	Amplifiers, Controls on CRO and their functions, Lissajous pattern		
TSO.5.e TSO.5.f	Explain deflection systems of CRO Explain working of digital storage oscilloscope using block diagram.	Measurement of voltage, amplitude, time period, frequency and phase angle		
TSO.5.g	Describe the working of Q/ LCR meter using block diagram	 Digital Storage Oscilloscope- Basic block diagram and working Q/LCR meter, Digital LCR meter- Block diagram, 		
TSO.5.h	Explain the working of the given type of recorders with the help of a block diagram	 Of Let Meter, Digital Let Meter Block diagram, Working principle Analog/Digital recorders, Graphic recorder, Strip Chart recorder, XY recorder (Only block diagram) Applications of Recorders. 		

Note: One major TSO may require more than one theory session/period.

J) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420302

Practical/Lab Session Outcomes (LSOs)			Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSOs 1.1	Select Indicating, Recording and Integrating Instruments in your laboratory and write their specifications and features.	No. 1.	Identification of Indicating, Recording and Integrating Instruments	C01
LSOs 2.1	Measure DC, AC voltage and current using analogue meter.	2.	Measurement of DC, AC voltage and current.	CO2
LSOs 2.2	Convert a given galvanometer to DC/AC current- meter.	3.	Conversion of a given galvanometer to DC/AC current- meter.	CO2
LSOs 2.3	Extend the range of ammeter and voltmeter to measure high value of current and voltages using shunt and multiplier.	4.	Extension of range of ammeter and voltmeter to measure high value of current and voltages using shunt and multiplier.	CO2
LSOs 2.4	Measure high value of current and voltages using Current and Potential Transformer.	5.	Measurement of high value of current and voltages using Current and Potential Transformer.	CO2
LSOs 2.5	Calibrate the given ammeter and voltmeter with a standard meter	6.	Calibration of ammeter and voltmeter	CO2
LSOs 2.6	Interpret the working principle of moving iron and moving coil type instruments.	7.	Demonstration of working of Moving Iron and Moving Coil type instruments.	CO2
LSOs 2.7	Interpret the working principle of Induction type and dynamometer type instruments	8.	Demonstration of the working of Induction type and dynamometer type instruments	CO2
LSOs 2.8N	Aeasure voltage, current, resistance using Digital Multimeter	9.	Measurement of voltage, current, resistance using Digital Multimeter	CO2
LSOs 2.9 F	erform continuity test using digital Multimeter	10.	Continuity test using digital Multimeter	CO2
LSOs 3.1	Measure single and three phase power using one wattmeter	11.	Measurement of single and three phase power using one wattmeter	CO3
LSOs 3.2	Measure 3 phase power using two and three wattmeter method	12.	Measurement of 3 phase power using two and three wattmeter method	CO3
LSOs 3.3	Calibrate the given wattmeter with a standard meter.	13.	Calibration of wattmeter.	CO3
LSOs 3.4	Calibrate the given single-phase energy meter with a standard meter.	14.	Calibration of single-phase energy meter.	CO3
LSOs 3.5	Interpret the working of a digital energy meter	15.	Demonstration of the working of a digital energy meter	CO3
LSOs 5.1	Use Kelvin's double bridge for measurement of low resistance	16.	Kelvin's double bridge for measurement of low resistance	CO4
LSOs 5.2	Measure medium resistance using Wheatstone bridge or Voltmeter-Ammeter method or Ohmmeter	17.	Measurement of medium resistance using Wheatstone bridge or Voltmeter-Ammeter method or Ohmmeter	CO4
LSOs 5.3 LSOs 5.4	Us Megger to measure insulation resistance. Measure insulation resistance using Megger.	18.	Measurement of insulation resistance using Megger.	CO4
LSOs 5.5	Using Earth tester to measure earth resistance. Measure earth resistance using Earth tester.	19.	Measurement of earth resistance using Earth tester	CO4
LSOs 5.6 LSOs 5.7	Use Anderson or Maxwell inductance capacitance bridge to measure unknown inductance.	20.	Measurement of unknown inductance using Anderson or Maxwell inductance capacitance bridge	CO4

Practical/Lab Session Outcomes (LSOs)			Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSOs 5.8	Measure unknown inductance using Anderson or Maxwell inductance capacitance bridge			
LSOs 5.9 LSOs 5.10	Use Schering's Bridge to measure unknown capacitance. Measure unknown capacitance using Schering's Bridge.	21.	Measurement of unknown capacitance using Schering's Bridge	CO4
	Use Wein bridge or Weston frequency meter to measure unknown frequency Measure unknown frequency using Wein bridge or Weston frequency meter.	22.	Measurement of unknown frequency using Wein bridge or Weston frequency meter	CO4
LSOs 5.13	Measure power factor using a dynamometer PF meter	23.	Measurement of power factor using a dynamometer PF meter	CO5
LSOs 5.14	Use phase sequence indicator to identify the phase sequence and reverse the phase sequence.	24.	Identification of phase sequence and reverse the phase sequence using the phase sequence indicator	CO5
LSOs 5.15	Demonstrate the use of Synchroscope for Synchronization	25.	Demonstration of use of Synchroscope for Synchronization	CO5
LSOs 5.16	Measure the amplitude, frequency, time period and Phase difference of different signals generated by function generator using CRO.	26.	Measurement of amplitude, Frequency, time period and Phase difference of different signals generated by function generator using CRO.	CO5
LSOs 5.17	Measure Unknown frequency, phase angle using Lissajous patterns.	27.	Measurement of Unknown frequency, phase angle using Lissajous patterns.	CO5
LSOs 5.18	Identify the various parts of digital storage oscilloscope.	28.	Demonstration of features of digital storage oscilloscope.	CO5
	Us LCR meter to measure resistance, Inductance and Capacitance. Measure resistance, Inductance and Capacitance using LCR meter.	29.	Measurement of resistance, Inductance and Capacitance using LCR meter	CO5
LSOs 5.21	Measure quality Factor of the given Inductor and Capacitor using LCR/Q Meter	30.	Measurement of quality Factor of Inductor and Capacitor using LCR/Q Meter	CO5
LSOs 5.22	Interpret the working principle of various analog/digital recorders.	31.	Demonstration of the working of various analog/digital recorders.	CO5

- **K)** Suggested Term Work and Self Learning: S2420302 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. Prepare a chart depicting symbols of various electrical measuring instruments.
 - ii. Prepare a chart showing the production of deflecting, controlling and damping torque in measuring instruments.
 - iii. Prepare a chart showing the construction and working principle of a PMMC, MI, Induction and dynamometer type of instruments
 - iv. Use an Analog Voltmeter to Measure the Voltage at a Point Referenced to Ground.
 - v. Write the specifications of various electromechanical meters available in the market.
 - vi. Prepare a chart depicting various DC and AC bridges, its uses and procedure to determine electrical parameter.
 - vii. Prepare a chart depicting precisely the working of megger and earth tester

- viii. Prepare a chart depicting the construction and various control of CRO.
- ix. Observe the voltage waveform of a RC circuit switched on to DC supply using CRO and determine time constant.
- x. Identify the terminals of various types of meters and prepare a report on it
- xi. Determine the power factor with resistive and inductive load using 2 wattmeter method and comment on the result.

b. Micro Projects:

- 1. Search on internet for the information about latest trends in indicating, measuring and recording instruments in different field of applications and prepare detail report on it
- 2. Connect three phase circuit and measure active power using watt meters and prepare report on it.
- 3. Connect three phase circuit and measure reactive power using appropriate meters and prepare report on it.
- 4. Use a DMM to Measure the Voltage of a Point Referenced to Ground and submit report on it.
- 5. Use a DMM to Measure Voltage Drops in Series and Parallel Circuits and submit report on it.
- 6. Make a meter bridge by soldering the components and prepare a report on it.
- 7. Measure the Insulation Resistance values of a healthy and non-healthy DC machine and Transformer using Megger and prepare a report on the results obtained.
- 8. Prepare a report on use of various recorders for different applications
- 9. Prepare a detailed report on use of LCR meter
- 10. Observe supply current waveform in a tube light circuit using CRO and prepare a report on it.
- 11. Prepare a report on the special features of DSO.

c. Other Activities:

i. Seminar on –

- Working of different types of electrical measuring instruments
- Different torques produced in an electrical measuring instrument
- Megger and its use
- Earth resistance and its measurement using earth tester
- Working of digital multimeter and its applications
- Working of LCR meter and its applications

ii. Survey -

- Carry out a market /internet survey to explore the specification of CRO
- Carry out a market/internet survey to explore the specification of DSO

iii. Visits-

- Visit a nearby industry where electrical instruments are manufactured /assembled.
- Visit a local supplier to get exposure to various ranges of measuring instruments.

d. Self-learning topics:

- 1. Use of basic measuring instruments in industrial applications
- 2. Use of basic measuring instruments in commercial field
- 3. Use of basic measuring instruments in research field
- 4. Specifications of available models of Ammeter, Voltmeter, Wattmeter, Energy meter in the market
- 5. Specifications of available models of DVM, DMM, CRO, DSO.LCR meter in the market.

L) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix								
	Theory Asses	sment (TA)**	Term Wor	Term Work Assessment (TWA)			ment (LA) [#]		
Progressive End Theory Theory Assessment Assessment (ETA) COs (PTA)				ork & Self-Lo Assessmer	0	Progressive Lab Assessment	End Laboratory Assessment		
	Class/Mid As			Micro	Other	(PLA)	(ELA)		
	Sem Test			Projects	Activities*				
CO-1	15%	15%	20%		20%	20%	20%		
CO-2	20%	20%	20%		20%	20%	20%		
CO-3	20%	20%	20%	100	20%	20%	20%		
CO-4	25%	25%	20%	%	20%	25%	20%		
CO-5	20%	20%	20%	20%		15%	20%		
Total	30	70	20 20 10			20	30		
Marks			<u> </u>	50					

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- **M)** Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Un	it Title and Number	Total	Relevant	Total		ETA (Marks)			
		Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)		
Unit-1.0	Basics of Measurement and Instrumentation	6	CO1	10	3	4	3		
Unit-2.0	Measurement of Voltage and Current	10	CO2	14	4	6	4		
Unit-3.0	Measurement of Power and Energy	12	CO3	14	4	4	6		
Unit-4.0	Measurement using Bridges/Meters	12	CO4	17	5	6	6		
Unit- 5.0 Measurement of other Electrical Parameters		8	CO5	15	4	5	6		
	Total Marks	48	-	70	20	25	25		

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

N) Suggested Assessment Table for Laboratory (Practical):

		Relevant		PLA/EI	.A	
S. No.	Laboratory Practical Titles	Cos	Perform	Viva-		
5. NO.		Number	PRA*	PDA**	Voce	
		(s)	(%)	(%)	(%)	
1.	Identification of Indicating, Recording and Integrating Instruments	CO1	45	35	20	
2.	Measurement of DC, AC voltage and current.	CO2	45	35	20	
3.	Conversion of a given galvanometer to DC/AC current- meter.	CO2	45	35	20	
4.	Extension of range of ammeter and voltmeter to measure high value of current and voltages using shunt and multiplier.	CO2	45	35	20	
5.	Measurement of high value of current and voltages using Current and Potential Transformer.	CO2	45	35	20	
6.	Calibration of ammeter and voltmeter	CO2	45	35	20	
7.	Demonstration of working of Moving Iron and Moving Coil type instruments.	CO2	45	35	20	
8.	Demonstration of the working of Induction type and dynamometer type instruments	CO2	45	35	20	
9.	Measurement of voltage, current, resistance using Digital Multimeter	CO2	45	35	20	
10.	Continuity test using digital Multimeter	CO2	45	35	20	
11.	Measurement of single and three phase power using one wattmeter	CO3	45	35	20	
12.	Measurement of 3 phase power using two and three wattmeter method	CO3	45	35	20	
13.	Calibration of wattmeter.	CO3	45	35	20	
14.	Calibration of single-phase energy meter.	CO3	45	35	20	
15.	Demonstration of the working of a digital energy meter	CO3	45	35	20	
16.	Kelvin's double bridge for measurement of low resistance	CO4	45	35	20	
17.	Measurement of medium resistance using Wheatstone bridge or Voltmeter-Ammeter method or Ohmmeter	CO4	45	35	20	
18.	Measurement of insulation resistance using Megger.	CO4	45	35	20	
19.	Measurement of earth resistance using Earth tester	CO4	45	35	20	
20.	Measurement of unknown inductance using Anderson or Maxwell inductance capacitance bridge	CO4	45	35	20	
21.	Measurement of unknown capacitance using Schering's Bridge	CO4	45	35	20	
22.	Measurement of unknown frequency using Wein bridge or Weston frequency meter	CO4	45	35	20	
23.	Measurement of power factor using a dynamometer PF meter	CO5	45	35	20	

		Relevant		PLA /EL	A
S. No.	Laboratory Dractical Titles	Cos	Perforn	nance	Viva-
5. NO.	Laboratory Practical Titles	Number (s)	PRA* (%)	PDA** (%)	Voce (%)
24.	Identification of phase sequence and reverse the phase sequence using the phase sequence indicator	CO5	45	35	20
25.	Demonstration of use of Synchroscope for Synchronization	CO5	45	35	20
26.	Measurement of amplitude, Frequency, time period and Phase difference of different signals generated by function generator using CRO.	CO5	45	35	20
27.	Measurement of Unknown frequency, phase angle using Lissajous patterns.	CO5	45	35	20
28.	Demonstration of features of digital storage oscilloscope.	CO5	45	35	20
29.	Measurement of resistance, Inductance and Capacitance using LCR meter	CO5	45	35	20
30.	Measurement of quality Factor of Inductor and Capacitor using LCR/Q Meter	CO5	45	35	20
31.	Demonstration of the working of various analog/digital recorders.	CO5	45	35	20

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

O) Suggested Instructional/Implementation Strategies: Different Instructional/ ImplementationStrategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and CommunicationsTechnology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

P) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software				
1.	Moving Iron Ammeter Moving Coil Ammeter	0-2.5/5 Ampere 0-10/20Ampere 0-2 Ampere	1,2,3,6		
2.	Moving Iron Voltmeter Moving Coil Voltmeter	0-75/150/300V 0-150/300/600V	1,2,4,5,6,7,8		
3.	Wattmeter	0-2.5/5A, 75/150/300V 0-5/10A, 150/300/600V	11,12,13		
4.	Energy Meter	Single phase	14		
5.	Digital/energy meter	230V, Single phase	15		
6.	Shunt Multiplier	for Experimentation and Demonstration purpose	4		

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
7.	Current Transformer Potential Transformer	CT and PT for Engineering Laboratory Experimentation and Demonstration purpose	5
8.	Model of MI MC, Dynamometer and induction type meters	For demonstration purpose.	7,8
9.	Megger	Mains/battery pack operated analog/digital insulation tester with selectable ranges of 50V, 250V, 500 V, 1000 V, 2500 V, 5000 V.	18
10.	Kelvin's double bridge	Range : 0.2 Micro - Ohms to 11 ohms, Accuracy : 0.1%(or ±1Slidewiredivisionwhicheverisgreater), Multiplier: 5Ranges(0.01,0.1,1,10 and 100)	16
11.	Wheatstone bridge	MeasuringRange-1.000Ωto10.00MΩ,MeasuringArm-x $1m\Omega,x10\Omega+10\Omegax10+100\Omegax10+1000\Omegax10$ (min.onestep:1Ω),RatioArms-x0.001x0.01,x0.01,x0.1,x1,x10,100,x1000(M10,M100,M1000Murray and Varley loop testing),GalvanometerPowerSource-Three1.5Vbatteries(built-in),Range, ±0.1% of reading on100Ω to 100kΩ Range, Accuracy- ±0.3% of readingon10Ω to 1MΩ Range, ±0.6% of reading on 1Ωto10MΩ Range	17
12.	Maxwell bridge	Maxwell's inductance and Maxwells inductance- capacitance bridge on single board to determine unknown inductance and its Q factor by comparison with either variable standard self- inductance or standard variable capacitance. by setting the null point	20
13.	Schering's Bridge	Four arms provided with suitable connectors, One 1 kHz oscillator of fixed amplitude to feed the input to the bridge. Measuring Range: 0.001uF - 2.0uF. Connector facility should be provided to view the output of the bridge externally by CRO, required patch Chords to measure unknown Capacitance, Input Voltage: 15V DC, Output Frequency :1kHz Output Voltage :2V AC Output Current :0.5 Amps	21
14.	Digital Multimeter	1/2 digit display, 9999 counts digital multimeter measuring: AC Voltage: 0-1000 V max DC Voltage: 0-24 V AC Current: 0-10/20 A Max DC Current: 0-10 A Max Resistance: 0 – 100 M ohm Capacitance measurement, component tester	9,10, and all
15.	D.C. Regulated power supply	230 Volt AC to 0-30Volt DC,5Amp display for voltage and current.	26,27,28,29,30
16.	Cathode Ray Oscilloscope	30 MHz, Dual Trace	26,27
17.	Digital Storage Oscilloscope	2 Channel 70 MHz & 100 MHz	28
18.	LCR/Q meter	Hand held type 3 ½ digit, 7 segment, LCD display	29,30

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
		Ranges: Inductance: Upto 200 H, Capacitance: Upto 2000 μ F, Resistance: Upto 20 M Ω Useful for measurement of inductances, capacitances and resistances of inductors, capacitors, resistors, motors, transformers, coils, chokes, cables, wires	
19.	Earth resistance Tester	Portable analog/digital to measure up to 10 ohms	19
20.	Soldering Iron	Soldering iron 230V, 30/50W, Flux for soldering and Solder filler material.	All
21.	Digital Voltmeter	Voltage DC Accuracy \pm (0.09% + 2) Current AC Maximum 10 A Accuracy \pm (0.09% + 1) Resistance, Max resolution 0.1 Ω	25,26
22.	Galvanometer	Current Sensitivity 0.9 μA/div ±10% Voltage sensitivity 270 μV/div ± 15% External Circuit resistance 200Ω	3
23.	Digital Volt-Ohm Meter	Power Requirements: 100 or 115, 200 or 230 V AC (must be specified), 50 or 60 Hz. Power Consumption: 20 VA max Operating Temperature Range: 5 to 40°C (41 to 104°F).	17
24.	Function generator	Outputs: Square wave, sine wave, triangle wave, TTL pulse, positive and negative ramp, pulse and skewed sine wave, AM, and sweep functions Frequency ranges: 0.1 Hz to 11 MHz, up/down range switchable in eight-decade steps Dial accuracy: ±5% of full scale from 0.1 Hz to 10 MHz 11 MHz setting not less than 11 MHz (ambient temperature 20° C to 30° C)	26,27
25.	Phase sequence Indicator	Operating voltage (AC): 50-500 V	24
26.	Synchroscope	Frequency: 50 ± 5% Synchronizing Condition: dark lamp method Accuracy: 2 degree or higher Angle of rotation: 360 degree Power consumption: less than 6VA Mounting: Flush Mounting	25

Q) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	A course in electrical & electronic measurements and instrumentation	Sawhney, A.K.	Dhanpat rai & sons, Delhi: ISBN-13: 978-8177001006
2.	Electronic Instrumentation	Kalsi H. S.	Tata McGraw-Hill Education ISBN-13:978-0-07-070206-6
3.	A course in Electrical & Electronics Measurement	Gupta J.B.	S K Kataria and Sons; Reprint 2013 edition (1 January 2013) ISBN-10 : 8188458937 ISBN-13 : 978-8188458936

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
4.	Electronic instrumentation & measurement techniques	Cooper, W.D. & Helfrick, A.D.,	New Delhi: Prentice Hall of India ISBN- 13:9780132507219
5.	Electrical measurements & measuring instruments	Suryanarayana	New Delhi, Tata McGraw Hill ISBN- 0-07-451751-1
6.	Instrumentation for Engineering Measurements	Dally, J.W. et al;	John Wiley & Sons, New York ISBN - 9780471551928
7.	Electronic Instrumentation Fundamentals	Albert Paul Malvino	Tata McGraw Hill, New Delhi ISBN-13: 978-0070398474
8.	Instruments Devices and System	Rangan C. S.	Tata McGraw Hill Publications ISBN- 9780074633502
9.	Digital Instrumentation	Bouwens A. J	Tata McGraw Hill Publications ISBN-0070067120

(b) Online Educational Resources:

- 1. Basics of Measurement & Measuring Instruments: https://www.youtube.com/watch?v=oV7TpfoiYNY
- 2. Electromechanical Measuring Instruments: https://www.youtube.com/watch?v=k5Nzkyb8u4Y
- 3. Ammeter, Voltmeter and wattmeter: https://www.youtube.com/watch?v=-tha5hKhC5Q
- 4. CT & PT:https://www.youtube.com/watch?v=D-ctyWhKTh0
- 5. Measurements using Bridges/meters:https://www.youtube.com/watch?v=nWWzKgEBqjA
- 6. Megger: https://www.youtube.com/watch?v=XV6QITwobLo
- 7. Electronic instruments: https://www.youtube.com/watch?v=TdUK6RPdIrA
- 8. True RMS meter:https://www.youtube.com/watch?v=7ZzwlklBbKc
- 9. Cathode Ray Oscilloscope :https://www.youtube.com/watch?v=U1amW7S1fcl
- 10. Cathode Ray Oscilloscope: https://www.youtube.com/watch?v=JsoZZM2Vc5Y
- 11. Lissajous pattern on CRO: https://www.youtube.com/watch?v=pSyitNgy8hE
- 12. Digital Storage Oscilloscope :https://www.youtube.com/watch?v=FkWtPou_RGM
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

•

A)	Course Code	
B)	Course Title	

- : 2420303(T2420303/P2420303/S2420303)
- Course Title : DC Mac
- C) Pre- requisite Course(s)

: DC Machines and Transformers

: Basic Electrical Engineering

D) Rationale

The technological changes are taking place very rapidly all over the world and is turning towards a multidisciplinary one. Electrical Engineering diploma holders are expected to apply the principle of electromechanical energy conversion in operating, testing and troubleshooting different types of DC machines, single phase & three phase transformers and special purpose transformers. This course will enable them to develop requisite knowledge, skills and attitude for maintaining various types of DC machines, single phase transformers, three phase transformers and special purpose transformers taking appropriate safety measures during handling of these equipment. This course fundamentally aims at familiarizing the students with the fundamentals of various DC machines, single phase and three phase transformer and development of requisite skills for maintaining these equipment. This course will also provide a strong foundation of DC Machines and Transformers and will enable the students to take up the advance course in electrical machines in the subsequent semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Test the performance of DC Generators.
- **CO-2** Control the speed of DC motors as per the requirement.
- **CO-3** Test the performance of Single-Phase transformers.
- **CO-4** Operate two three phase transformers in parallel as per the requirement.
- **CO-5** Use special purpose transformers as per the requirement.

F) Suggested Course Articulation Matrix (CAM):

		Programme Outcomes (POs)								
Course Outcomes (COs)	PO-1 Basic and Discipline- Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developmen t of Solutions	PO-4 Engineeri ngTools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	
CO-1	3	2	-	2	2	1	2			
CO-2	3	2	2	2	-	1	2			
CO-3	3	2	2	2	2	1	2			
CO-4	3	2	2	2	2	2	2			
CO-5	3	2	2	2	-	1	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

	Course	Course	Scheme of Study (Hours/Week)						
Board of Study	Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
			L	Т					
Electrical		DC Machines							
Engineering	2420303	and	03	-	04	02	09	06	
Engineering		Transformers							

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

				As	ssessment Scl	heme (Marks)		
Board of			Theory As (T/		Term Work Learning Ass (TW/	sessment	Lab Ass (LA)	essment	(TA+TWA+LA)
Study	Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
Electrical, Engineering	2420303	DC Machines and Transformers	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon thecompletion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Society connect, Multidisciplinary aspects, Indian Knowledge System (IKS) and others need to be integrated.

J) Theory Session Outcomes (TSOs) and Units: T2420303

Major Theory Session Outcomes (TSOs)		Units	Relevant CO Number(s)	
TSO.1.a	Describe the construction details of a DC machine.	Unit-1.0 DC Generators	CO1	
TSO.1.b TSO.1.c TSO.1.d TSO.1.e	Explain the working principle of the DC Generator. Classify DC Generator. Explain effect of armature reaction in a DC machine. Explain the process of commutation	 1.1 DC Machine: Construction 1.2 DC Generator: Working Principle 1.3 Types of DC generators: Shunt, Series and Compound and their applications 1.4 EMF equation 1.5 Armature reaction and its effects. 1.6 Commutation. 		
TSO.1.f	in DC Generator. Describe the procedural steps of voltage build up in the DC generator.	1.7 Voltage build-up in DC Generators 1.8 Internal and External Characteristics. 1.9 Losses and Efficiency		
TSO.1.g	Interpret the internal and external Characteristics of the given DC Generators.			
TSO.2.a TSO.2.b TSO.2.c	Explain the working principle of DC motor. Determine the torque for a given DC motor Interpret the various characteristics of DC motor	Unit-2.0 DC Motors 2.1 Working Principle. 2.2 EMF equation, significance of Back EMF	CO1, CO2	
TSO.2.d	Describe the procedure to start the DC motor using given type of starters.	2.3 Torque and Speed2.4 Characteristics of DC motors		
TSO.2.e	Describe the procedure to control the speed of the given DC motor.	 Torque vs Speed, Flux vs Current Torque vs current, Speed vs Current 		
TSO.2.f	Describe the procedure to select a particular DC motor for the given application.	2.5 Need of Starters -3-point and 4-point starters.2.6 Losses and Efficiency2.7 Speed Control of DC motors		
150.2.g	Enlist the applications of different types of motors including applications in modern transportation systems.	 Armature Control Method Field Flux Control Method 2.8 Selection of DC Motors. 2.9 Applications of different types of DC motors 		
TSO.3.a	Describe the constructional details of a single-phase transformer.	Unit 3 – Single Phase Transformer	CO3	
TSO.3.b	Explain the working principle of transformer.	3.1 Construction.3.2 Types -Shell type and core type.		
TSO.3.c	Derive EMF equation of a single-phase transformer.	3.3 Working Principle, Useful and leakage flux		
TSO.3.d	Calculate various losses using Open circuit	3.4 EMF Equation, Transformation Ratio.		
TSO.3.e	and Short circuit test. Differentiate Ideal and Practical	3.5 Losses – Core and copper		
TSO.3.f	transformer. Explain the performance with phasor	3.6 Ideal and Practical transformer.		
	diagram of the given transformer under no load and different loading conditions for	3.7 Equivalent circuit and phasor diagram.3.8 Per Unit (pu) system in transformers		
TSO.3.g	unity, lagging and leading power factor Explain the importance of voltage regulation.	3.9 Voltage Regulation -Condition for maximum, zero and minimum regulation.		
TSO.3.h	Explain the condition of maximum efficiency of a transformer.	3.10 Efficiency -Condition for Maximum Efficiency, All day efficiency and its significance		
TSO.3.i	Describe the procedure of performing the Polarity test, Open circuit, Short Circuit Test	3.11 Polarity test, Open circuit, Short Circuit Test		
TSO.3.j	in the given transformer. Enlist the essential and desirable conditions for parallel operation of two single phase	3.12 Parallel operation of two single transformers.3.13 Autotransformers -Construction, application, Inductive and conductive power transfer,		
TSO.3.k	transformers. Differentiate between autotransformer and	Copper saving.		

Majo	r Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO.3.I	two winding transformers. Explain the significance of Amorphous Metal Transformer (AMT).	3.14 Energy efficient Amorphous Metal Transformer (AMT).	
TSO.4.a	Describe the constructional details of 3- phase transformer.	Unit 4-Three Phase Transformer4.1 Bank of three single phase transformer and	CO3, CO4
TSO.4.b	Classify the different phasor groups of 3-phase transformer	4.1 Dank of three single phase transformer and single unit of 3-phase transformer4.2 Different parts of 3-phase transformers	
TSO.4.c	Explain the working of open delta transformer.	4.2 Difference parts of 3 phase transformers4.3 Phasor groups of 3-phase transformers4.4 Open Delta transformer	
TSO.4.d	Enlist the essential and desirable conditions for parallel operation of two 3-phase transformer.	4.5 Parallel Operations of two 3-phase transformers4.6 Magnetization phenomenon in Transformer.	
TSO.4.e	Explain the Magnetization phenomenon in Transformer.		
TSO.5.a	Explain the construction and working principle of the given special purpose transformers.	Unit 5– Special Purpose Transformers	CO4, CO5
TSO.5.b	Describe the basic testing Procedure of the given special purpose transformers.	5.1 Isolation Transformer 5.2 Grounding Transformer	
TSO.5.c	State the applications of the given special purpose transformers.	 5.3 Instrument transformer 5.4 Current Transformer 5.5 Potential Transformer 5.6 Welding transformer 	

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420303

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSOs 1.1	Identify different parts of a DC machine.	1.	Identification of parts of a DC Machine by dismantling the cut section model of a DC machine	CO1
LSOs 1.2	Interpret the effect of speed and field flux on generated voltage of DC shunt generator.	2.	Effect of speed and field flux on generated voltage of DC shunt generator	
LSOs 1.3	Test the performance of DC shunt generator on the given load condition.	3.	Load test of DC shunt Generator	
LSOs 1.4	Test the performance of DC series generator on the given load condition.	4.	Load test of DC series Generator	
LSOs 2.1	Use appropriate DC motor starter for starting the given DC Motor.	5.	Starting of D. C shunt motor using 3- point /4-point starter	CO1, CO2
LSOs 2.2	Change e terminal connection of DC shunt motor and observe the direction of rotation	6.	Reversal of Direction of a DC Shunt motor	
LSOs 2.3	Control speed of DC Shunt motor using field/flux control method (Above rated speed)	7.	Speed control of D.C shunt motor	
LSOs 2.4	Control speed of DC Shunt motor using armature control method (Below rated speed).	8.	Speed control of a D.C. Shunt motor	

Practical/Lab Session Outcomes (LSOs)			Laboratory Experiment/Practical Titles	Relevant COs Number(s)
	Test performance of DC shunt motor on the given load condition.	9.	Load test of D. C. shunt motor	
n	est performance of DC series notor on the given load condition.	10.	Load test of D.C. series motor	
	Apply direct method to brake the DC shunt notor.	11.	Brake test of D.C. shunt motor.	
	Measure voltage and current ratio of a given single phase transformer	12.	Measurement of voltage and current ratio of a given single phase transformer.	CO3
	est polarity of the given single phase ransformer.	13.	Polarity of a single-phase transformer	
	Test performance of a given transformer by ct load test.	14.	Direct load test on a single-phase transformer	
	Dbserve the no load waveform of a given ransformer using CRO	15.	No load waveform of a transformer using CRO	
	erform Open Circuit and Short Circuit test n a single-phase transformer.	16.	Open Circuit and Short Circuit test on a single-phase transformer.	
t	Perform parallel operation of two 1-phase ransformer having equal and unequal KVA rating under given load.	17.	Parallel operation of two single phase transformers.	
t	est performance of an auto ransformer and 1-phase two winding ransformer of same rating.	18.	Auto transformer and 1-phase two winding transformer of same rating	
LSOs 4.1 P	Perform parallel operation of two 3-phase ransformer having equal and unequal load sharing for a given load.	19.	Parallel operation of two three phase transformers for equal and unequal load sharing.	CO3, CO4
LSOs 5.1 N	Measure current ratio of the given Current ransformer using ammeter/clamp meter.	20.	Current ratio of a Current transformer	CO4, CO5
	Measure voltage ratio of the given Potential ransformer using voltmeter.	21.	Voltage ratio of a Potential Transformer	CO4, CO5

- L) Suggested Term Work and Self-Learning: S2420303 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. Prepare a chart to depict Flemings right hand rule as applicable to DC Generator and Flemings left hand rule as applicable to DC Motor with labeled sketches
 - ii. Prepare a chart indicating detailed classification of DC machines with labeled sketches
 - iii. Prepare a chart depicting the working of 3-Point DC shunt motor starter highlighting the inbuilt protective devices in the starter using a labeled sketch.
 - iv. Prepare a chart depicting the working of 4-Point DC shunt motor starter highlighting the inbuilt protective devices in the starter using a labeled sketch.
 - v. List the precautions to be taken while starting a DC series and shunt motor with reasons.
 - vi. Prepare a chart depicting the various parts of a transformer drawing neat labeled sketch.
 - vii. Draw core and shell type of transformers highlighting the difference between them.

- viii. List out the applications of single phase and three phase transformers, auto-transformer and wielding transformer.
- ix. Collect the information (specification, and use) and prepare a report on three phase three winding transformers based on information collected from different manufacturers.
- x. Prepare a chart displaying the various routine tests performed on a three-phase transformer as per IS.
- xi. Compare a bank of 3 single phase transformers with that of 3 phase transformers.
- xii. List out the applications of single phase, three phase transformers, auto-transformer and wielding transformer.

b. Micro Projects:

- 1. Fabricate single loop DC generator and observe the generated wave form on CRO.
- 2. Use suitable DC generator for arc welding purpose and Prepare a detailed report including selection of generator, connection and operation with safety precautions followed during use.
- 3. Prepare a report on strategies to start a given DC motor without conventional starters.
- 4. Build a Bridge rectifier using diodes of appropriate rating to provide supply to a DC Machine
- 5. Investigate whether OC & SC test or direct load test is preferred for determining the performance of a transformer
- 6. Fabricate and test a step-up or step-down transformer and submit detailed report on it.
- 7. Visit nearby sub-station and list out the main cause of brake-down of distribution transformer and propose strategies to reduce its failures.
- 8. Develop a three-phase transformer using three single phase transformer and compare its performance with a poly phase transformer.

c. Other Activities:

- 1. Seminar Topics-
 - DC Generators and its application
 - Characteristics of DC motors.
 - Hysteresis and Eddy current loss
 - Difference between power and distribution transformers
 - Industrial Applications of DC generators
 - Safety to be followed while using special transformers

2. Survey –

- Carry out a market survey for availability of transformers in market and list down the complete specifications of at least five transformers.
- Carry out a market survey for availability of DC generators in market and list down the complete specifications of at least five DC generators.
- Carry out a market survey for availability of DC motors in market and list down the complete specifications of at least five DC motors.
- Carry out internet survey to find out the types of insulation used between HV and LV winding and between winding and core for a HV, EHV and UHV transformer
- 3. Visits- Visit nearby substation and collect the name -plate specifications of sub-station transformers.

d. Self-learning topics:

- 1. Types of motors used in Metro, Mono rail and traction
- 2. Soft starters

- 3. Dry transformers.
- 4. Energy efficient DC Motors.
- 5. Insulation material used for HV and LV winding of transformers.
- 6. Industrial/commercial applications of special transformers
- 7. Advances in Transformers- Amorphous Metal Transformer

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix							
	Theory Assessment (TA)** Term Work Assessment (TWA)			nt (TWA)	Lab Assessment (LA) [#]			
Progressive End Theory Theory Assessment Assessment (ETA) COs (PTA)		0	Progressive Lab Assessment	End Laboratory Assessment				
	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)	
CO-1	15%	20%	20%	30%	30%	20%	20%	
CO-2	20%	25%	20%	30%	20%	25%	20%	
CO-3	25%	20%	20%	20%	20%	25%	20%	
CO-4	25%	20%	20%	20%	30%	15%	20%	
CO-5	15%	15%	20%		15%	20%		
Total	30	70	20 20 10		20	30		
Marks			50					

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)		
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 DC Generators	8	CO1	14	4	3	5
Unit-2.0 DC Motors	12	CO2	16	4	2	4
Unit-3.0 Single Phase Transformer	10	CO3	14	5	5	9
Unit-4.0 Three Phase Transformer	10	CO4	14	2	3	5
Unit- 5.0 Special purpose Transformers	8	CO5	12	5	5	9
Total Marks	48	-	70	20	18	32

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant	PLA /ELA		
S. No.	Laboratory Practical Titles	CosNumber	Performance		Viva-
5. 140.		(s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Identification of parts of a DC Machine by dismantling the cut section model of a DC machine	C01	45	35	20
2.	Effect of speed and field flux on generated voltage of DC shunt generator	CO1	45	35	20
3.	Load test of DC shunt Generator	C01	45	35	20
4.	Load test of DC series Generator	C01	45	35	20
5.	Starting of D. C shunt motor using 3-point /4-point starter	CO2	45	35	20
6.	Reversal of direction of a DC Shunt motor	CO2	60	30	20
7.	Speed control of D.C shunt motor	CO2	50	40	20
8.	Speed control of a DC Shunt motor	CO2	50	40	20
9.	Load test of D. C shunt motor	CO2	45	35	20
10.	Load test of D.C. series motor	CO2	45	35	20
11.	Brake test of D.C. shunt motor.	CO2	45	35	20
12.	Measurement of voltage and current ratio of a given single phase transformer.	CO3	45	35	20
13.	Polarity of a single-phase transformer	CO3	60	30	20
14.	Direct load test on a single-phase transformer	CO3	45	35	20
15.	No load waveform of a transformer using CRO	CO3	45	35	20
16.	Open Circuit and Short Circuit test on a single-phase transformer.	CO3	50	40	20
17.	Perform Parallel operation of two single phase transformers.	CO3	50	40	20
18.	Auto transformer and 1-phase two winding transformer of same rating	СО	50	40	20
19.	Parallel operation of two three phase transformers for equal and unequal load sharing	CO4	50	40	20
20.	Current ratio of a Current transformer	CO5	45	35	20
21.	Voltage ratio of a Potential Transformer	CO5	45	35	20

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ ImplementationStrategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	DC Ammeter	Range (0-5-10A), (0-2 A), Portable analog, PMMC type as per relevant BIS standard	2-4,6-11
2.	DC Voltmeter	Range (0-150/300V), (0-15/30/75 V), Portable analog PMMC type as per relevant BIS standard	1-11
3.	AC Ammeter	Range (0-2.5-5-10A), Portable analog MI type as per relevant BIS standard	12-20
4.	AC Voltmeter	Range (0-75/150/300V), Portable analog MI type as per relevant BIS standard	12-21
5.	Lamp Load	10 -20 A	As applicable
6.	Rheostat	0-500 Ohm, 1.2A); (0-100 Ohm, 5A); (0- 50 Ohm, 10A); (0-350 Ohm,1.5A); Nichrome wire wound rheostat on epoxy resin or class F insulating tube with two fixed and one sliding contact	As applicable
7.	DC Supply	230V DC, 50A supply (with inbuilt rectifier to convert AC to DC)	2-11
8.	Single phase transformer	Of suitable rating (500 VA to 2kVA)	12-18
9.	Single phase auto transformer	230V/0-270 V, 4/8/15 A	12-19
10.	Wattmeter (LPF and UPF) Single phase 3 phase	0-150/300/600V, 2.5/5 A 0-300/600 V, 10/20 A	12-19
11	DC Series Motor - Gen Set	Motor – 5 HP , Generator- 3 kW	4,10
12.	DC Shunt Motor - Gen Set	Motor – 5 HP, Generator- 3 kW	2,3,9,10
13.	DC motor Starter	3 Point/4 Point starter	5
14.	Current Transformer	Appropriate rating	20
15.	Potential Transformer	Appropriate rating	21
16.	Tachometer	Digital	2-11
17	Three phase transformers	Experimental setup/software for performing 3 phase transformer parallel operation	19

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Electrical Machines	Kothari, D.P. & Nagrath, I.J.	Tata McGraw Hill Education Pvt. Ltd. New Delhi, 4 th Edition,ISBN: 9780070699670
2.	Electric Machines	Ashfaq Husain	Dhanpat Rai & Company, Latest Edition, ISBN: 6700000000432
3.	Electrical Technology, Volume – II (AC & DC Machines)	Theraja B.L.	S. Chand and Co. Ltd., New Delhi , Latest Edition, ISBN:9788121924375
4.	Electrical Machinery	Dr. P.S. Bhimbra	Khanna Publications, Latest Edition ISBN: 8174091734
5.	Basic Electrical Engineering (Hindi)	Mehta & Gupta	Dhanpat Rai Publishing Company(P) Ltd., 9 th Edition, 2013, ISBN: 978938437826
6.	Electrical Machines	Bhattacharya S. K.	Tata McGraw Hill Education Pvt. Ltd., New Delhi ISBN:9789332902855
7.	Electrical Machines (AC & DC)	Gupta J. B.	S. K. Kataria& Sons, New Delhi, ISBN:9788188458141
8.	Electrical Machines	Kothari, D.P. & Nagrath, I.J.	Tata McGraw Hill Education Pvt. Ltd. New Delhi ISBN:9780070699670
9.	Basic Electrical Engineering	Mittle V.N. and Mittal Arvind	Tata McGraw Hill Education Pvt. Ltd. New Delhi ISBN:9780070593572
10	Electric Machinery	Arthur Eugene Fitzgerald and Charles Kingsley	Tata McGraw Hill Education Publications ISBN13: 9780070530393
11	Electrical Engineering Fundamentals	Vincent Del Toro	Prentice hall Publications ISBN-13 :9780132475525

(b) Online Educational Resources:

- 1. www.nptel.com/iitm/
- 2. www.vlab.com/
- 3. Electrical Machines: http://www.eeeuniversity.com/2013/07/animation-of-electricmachines.html
- 4. Transformer: -https://www.youtube.com/watch?v=vh_aCAHThTQ
- 5. AC /DC Motor and Generator: -https://www.youtube.com/watch?v=4texz0Gn7cw
- 6. DC Motor & Generator: -https://www.youtube.com/watch?v=LAtPHANEfQo
- 7. AC DC motors: https://www.youtube.com/watch?v=unxTKC01CBQ
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages related to D. C. Machines and Transformers
- 2. Users' Guide for D.C. Machines and Transformers
- 3. Manufacturers' Manual for D.C. Machines and Transformers
- 4. Lab Manuals for D.C. Machines and Transformers

A)	Course Code	: 2420304(T2420304/S2420304)
B)	Course Title	: Electrical Power Generation, Transmission and Distribution
C)	Pre- requisite Course(s)	: Basic Electrical Engineering, Electrical Circuit & Networks,
		DC Machines and Transformers
D)	Rationale	:

Electrical power plays a significant role in the development of industries and agriculture. With growing demand of electric power and diminishing fossil fuels, it has become imperative to generate power more efficiently. This course therefore deals in detail not only about generation of electric power using thermal (coal), hydro, nuclear fuel and diesel but also about transmission and distribution and also about deregulation of power system. The generating power plants needs highly skilled technicians who are capable of operating and maintaining various control equipment to generate, transmit and distribute power effectively and efficiently. This course attempts to develop the basic cognitive skills required to take appropriate steps/decisions to maintain the various and auxiliary equipment of power plants, transmission and distribution system.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Maintain Thermal, Hydro, Nuclear and Gas based Electrical Power Generating plants for its efficient operation.
- **CO-2** Maintain Electrical Power Generating Plants based on Renewable Energy Sources for its efficient operation.
- **CO-3** Maintain Electrical Power Transmission System.
- **CO-4** Maintain Electrical Power Distribution System.
- **CO-5** Interpret the restructuring process and structure of Deregulated Power System.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes (POs) Course								
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2
(COs)	Basic and	Problem	Design/	Engineering	Engineering	Project	Life Long		
	Discipline	Analysis	Development	Tools	Practices for Society,	Management	Learning		
	Specific		of Solutions		Sustainability and				
	Knowledge				Environment				
CO-1	3	2	2	2	2	1	2		
CO-2	3	2	2	2	2	1	2		
CO-3	3	2	2	2	2	1	2		
CO-4	3	2	2	2	1	2	2		
CO-5	3	2	1	-	2	2	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

	Course Course		Scheme of Study (Hours/Week)							
Board of	Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
Study			L	т						
Electrical Engineering	2420304	Electrical Power Generation, Transmission and Distribution	02	01	-	02	05	04		

Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)
- Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.
- TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)
- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.
- C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)
- **Note:** TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

				Α	ssessment S	cheme (Mar	·ks)		
Board of			Theory Ass (T <i>F</i>		Self Le Asses	Work & earning sment VA)	Lab Asso (L	essment A)	(TA+TWA+LA)
Study	Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
Electrical Engineering	2420304	Electrical Power Generation, Transmission and Distribution	30	70	20	30	-	-	150

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

• Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2420304

M	ajor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b. TSO 1c. TSO 1d. TSO 1e. TSO 1f. TSO 1g.	Describe the layout of the given type of power plant for electric power generation with labeled block diagram. Explain the working of the given type of power plant with sketches. Describe the criteria considered for site selection of the given power plant. State the functions of different components of the given type power plant. Explain the properties of the fuel used in the specified thermal power plants. Describe the energy conversion process in the given type of power plants State the given terms related to Power generation plants. Explain the given factors which affects the economics of electric power generation.	 Unit-1.0 Generation of Electrical Power 1.1 Thermal Power Plant: Lay out, working and Site selection. Major Auxiliaries: Functions Properties of conventional fuels used in Thermal Power Plants 1.2 Hydro Power Plants: Elements of Hydro power plant, Energy conversion process, Layout, and Site selection, Classification Nuclear power Plant: Lay out, working and site selection Properties of conventional fuels used in nuclear power plants, safe practices in nuclear power plants, Types of nuclear reactors, Disposal of nuclear waste and nuclear shielding. 1.4 Gas power plant: Lay out, working and site selection Other features of Power generation Plants: Connected load, firm power, cold reserve, hot reserve, spinning reserve. Factors affecting cost of generation: Average demand, maximum demand, demand factor, plant capacity factor, plant use factor, diversity factor, load factor and plant load factor. Base load and peak load plants; Load curve, load duration curve, integrated duration curve. 	CO1
TSO 2a.	Describe with sketches the layout and working of the solar energy power plant.	Unit-2 Renewable Energy Sources	CO1, CO2
	Describe with sketches the layout and working of the wind energy power plant. Describe with sketches the layout and	 2.1 Types of Renewable Energy Sources. 2.2 Solar Energy: Potential of solar energy, Photovoltaic effect, Construction & materials used in solar photo-voltaic cells, working & applications of solar energy. 	
	working of the Bio-mass based power plants.	energy. 2.3 Wind Energy: Selection of site for wind mills, Working Dringiple, Plack diagram, Applications	
TSO 2d.	Describe with sketches the layout and working of the Geo-thermal energy power plant.	 Working Principle, Block diagram, Applications 2.4 Bio-Mass & Bio-Gas Energy: Composition of Bio-Gas & its calorific value, Traditional and non-traditional Biogas plants, Bio-mass based power generation 	
TSO 2e.	Describe with sketches the layout and working of the Ocean energy power plant.	plants, their capacities and applications 2.5 Geo-thermal Energy: Working Principle, Block	
TSO 2f.	Describe the layout and working of the Fuel cell with sketches.	 Diagram and applications. 2.6 Ocean Energy: Ocean Thermal Electric Conversion, Energy from Tides, Site requirements, Advantages and Limitations of Tidal power generation. 2.7 Fuel Cells: Construction, working types and applications 	

M	ajor Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
TSO 3a.	Explain the effects of R, L and C on the	Unit-3	3.0 Transmission of Electrical Power	CO2, CO3
	given transmission line.			,
TSO 3b.	Explain the features of given type of transmission lines	3.1	Transmission Line Parameters: Resistances, Inductances and Capacitances	
TSO 3c.	State the features of different types of conductors.	3.2	Classification of Transmission Lines: short, medium and long	
TSO 3d.	State the need for different types of insulators and calculate string efficiency	3.3	Comparison of different types of transmission systems.	
TSO 3e.	of given type of insulators. Describe the given method of improving	3.4	Types of Conductors-Copper, Aluminum: Solid, stranded and bundled conductors.	
TSO 3f.	string efficiency of insulators. Explain the criteria for spacing of	3.5	Line Insulators – requirements, types, Failure of insulator.	
TSO 3g.	conductors Calculate sag in given type of transmission system.	3.6	String Efficiency, string efficiency improvement method: By using longer cross arm, By grading the insulator and By using guard ring	
TSO 3h.	Explain the phenomena of corona and factors affecting it in given type of	3.7	Spacing between Conductors, span length and sag calculation.	
'SO 3i.	transmission line. Explain different phenomena occurred in	3.8	Corona – corona formation, advantages & disadvantages, factors affecting corona	
SO 3j.	given transmission line. Calculate the performance parameters	3.9	Skin effect, proximity effect, Ferranti effect and Transposition of conductors.	
SO 3k.	single phase short transmission line. Explain the importance and functions of	3.10	Losses, efficiency, regulation and Effect of load power factor	
	the load dispatch Centre. State the salient features of the given EHV	3.11 3.12	Load dispatch Centre Issues of Distributed Generation Integrated to	
	transmission system.	3.13	distribution Grid. Requirement of EHV transmission.	
		-	HVAC Transmission HVDC Transmission	
	State the need for distribution system.	Unit-4.	0 Electrical Power Distribution System	CO3, CO4
	Describe the various connection schemes of the distribution system with sketches.	4.1	Distribution system and its Requirements.	
TSO 4c.	Calculate voltage drop and minimum potential point using the given methods for 1-phase and 3-phase distribution	4.2 4.3	Connection schemes of distribution system. A.C. distribution: Voltage drop, sending end voltage, receiving end voltage, point of	
TSO 4d.	system. Describe the measures to be adapted to take of the distributed generation in the	4.4	minimum potential, minimum potential value and power loss Power factor referred to receiving end voltage	
TSO 4e.	distribution system. State the need for electrical substations	4.5	and power factor referred to respective load voltage.	
TSO 4f.	and relevant site for given substation. Sketch the elevation layout of a typical	4.5	Substation: Classification of substations based on; voltage level and Type of installation.	
	11/33kV electrical substation with various switchgear and typical spacing between	4.6 4.7	Selection and location of site for substation. Installation of substation equipment.	
TSO 4g.	them and the ground level as well. Describe the installation procedure of	4.8	Underground Cables: Requirements, classification, construction, comparison with overhead lines.	
TSO 4h.	substation equipment's. State the features of unarmored and	4.9	Laying of underground cable: Direct laying, Draw in system and Solid system	
TSO 4i.	armored underground cables Describe the given laying procedure for underground cable.		. , -	
TSO 5a.	State the concept and purpose of	Unit-5	.0 Deregulated Power system	CO4, CO5
TSO 5b.	deregulation in power industry. State the reasons for adopting deregulation in	5.1 5.2	Introduction. Reasons for restructuring/ deregulation of	

Major Theory Session Outcomes (TSOs)			Units	
	development of power industry.		power system.	
TSO 5c.	Explain the process involved in restructured power system.	5.3	Objectives of deregulation of various power system across the world.	
TSO 5d.	State the functions of the given ancillary support system.	5.4 5.5	Restructuring process Ancillary services: Frequency support ancillary services, voltage control ancillary services and	
TSO 5e.	State issues involved in deregulation process.	5.6	black start ancillary services Issues involved in deregulation.	

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: (Not Applicable)

- L) Suggested Term Work and Self Learning: S2420304 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - a) Enlist the merits and demerits of Thermal Power Plant over Hydroelectric plant.
 - b) Draw the layout of a typical thermal, Hydro and Nuclear plant
 - c) Prepare the current installed and generating capacity of various renewable energy sources in India
 - d) Sketch different components of transmission line and explain the purpose of each in detail.
 - e) Calculate inductance value of a given transmission line.
 - f) Calculate capacitance value of a given transmission line.
 - g) Solve problems on string efficiency and sag.
 - h) Prepare report on Power Cable Jointing procedure of unarmoured and armoured power cable.
 - i) Calculate the performance of given transmission line.
 - j) Estimate the string efficiency of the given type of insulators.
 - k) Illustrate the ancillary services, reform initiatives and open access issues in Deregulated Power Industry

b. Micro Projects:

- I. Identify the different parts of thermal power plant using video/ site visit etc. and Prepare a report on generating capacity of any Thermal Power Plant describing installed capacity of turbine, Generator etc.
- II. Observe the operation of thermal power plant using video programme and prepare report on it.
- III. Identify the different parts of Nuclear power plant using video/ site visit etc. and Prepare a report on generating capacity of any Nuclear Power Plant describing installed capacity of turbine, Generator etc.
- IV. Observe the operation of Nuclear power plant using video programme and prepare report on it.
- V. Identify the different parts of Hydro power plant using video/ site visit etc. and Prepare a report on generating capacity of any Hydro Power Plant describing installed capacity of turbine, Generator etc.
- VI. Observe the operation of Hydro power plant using video programme and prepare report on it.
- VII. Identify the different parts of Wind power plant using video/ site visit etc. and Prepare a report on generating capacity of any Wind Power Plant describing installed capacity of Generator etc.
- VIII. List the types of Insulators used in Power Transmission and Distribution System and prepare chart on its uses.
- IX. Collect the data from nearest power station/substation for load curve preparation and interpret it.

- X. Prepare a report on different type of insulators and conductors used in transmission system with their specifications.
- XI. Prepare a chart on different types of power cables used in transmission and distribution system showing its classification and specific applications.
- XII. Find out the availability of the various transmission and distribution components and comparison of their specification and prices after market survey.
- XIII. Prepare a model of a substation.
- XIV. Prepare a model for generation of electricity using wind power.
- XV. Prepare a model for generation of electricity using solar power
- XVI. Prepare technical report after visiting a nearby Solar PV station.
- XVII. Prepare technical report after visiting a nearby Wind Power station.

c. Other Activities:

- a) Seminar Topics:
 - Types of Turbine used in Thermal and Hydro Power Plant.
 - Types of alternators used in Thermal and Hydro Power Plant.
 - HVAC and HVDC Transmission System.
 - Power transmission by BSPTCL
 - Ancillary Services.

b) Visits:

- Visit a nearby Solar Power Plant and draw a general layout of the solar PV system Installation and prepare report on the Installation arrangement of different parts/components of it.
- Visit a nearby power station/ substation and draw a general layout of the electrical power system and prepare a report on types of supporting structure used in transmission and distribution system with their power ratings.
- Visit to nearby power station/substation. Prepare report of visit with special comments on transmission and distribution line components used, technique used, material used and unit charge of energy produced.
- Visit to 66 kV distribution sub-station and draw line diagram with equipment specifications.
- Visit 132/220/400kV transmission sub-station and draw line diagram with equipment specifications.
- Visit to a nearby Load Dispatch Centre and prepare Technical Report on it.
- Visit to nearby Electrical Power Generation Station and prepare Technical report on it.
- c) Self- Learning Topics:
 - Flexible AC Transmission Line
 - Dry Transformers.
 - DC Distribution System.
 - Gas Insulated Substation
 - Flexible Ac transmission line
 - Smart grid
 - Underground Transformer Installation.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

				Course Evalua	tion Matrix		
	Theory Assessment (TA)** Term Work Assessment (TWA)				Lab Assessment (LA) [#]		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work & Self-Learning Assessment			Progressive Lab Assessment	End Laboratory Assessment
	Class/Mid		Assignmen	Assignmen Micro Other		(PLA)	(ELA)
	Sem Test		ts	Projects	Activities*		
CO-1	30%	30%	10%		20%	-	-
CO-2	20%	20%	10%		20%	-	-
CO-3	20%	20%	40%	100%	20%	-	-
CO-4	20%	20%	30%	100%	20%	-	-
CO-5	10%	10%	10%		20%	-	-
Total	30	70	20 20 10		-	-	
Marks				50			

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

: Mentioned under point-(O)

Note:

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Generation of Electrical Power.	10	CO1	20	5	7	8
Unit-2.0 Renewable Energy Sources.	7	CO2	14	4	5	5
Unit-3.0 Transmission of Electrical Power	8	CO3	14	4	5	5
Unit-4.0 Electrical power Distribution System	7	CO4	14	4	5	5
Unit-5.0 Deregulated Power system	4	CO5	08	3	3	2
Total Marks	36	-	70	20	25	25

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical): (Not Applicable)

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications
1.	Simulation model/software for demonstrating the parts and working of various power generating plants	Thermal, Hydro, Nuclear, Solar, Wind
3.	Transmission line simulator (Short, Medium and Long)	 Single-phase and three-phase lines Six-section three-phase line Resistive, inductive and capacitive loads Over current protection relay
4.	Different types of overhead line Insulators	Disc type, pin type, shackle type
5.	Different types of underground cables	Armoured and un armoured

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Power Plant Engineering	P K Nag	McGraw Hill, New Delhi, ISBN:978-9339204044
2.	A Course in Electrical Power	JB Gupta	S K Katarina and Sons, New Delhi.2014, ISBN:9789350143742
3.	Generation of Electrical Energy	B.R. Gupta	Chand &Co New Delhi, 2010 ISBN: 9788121901024
4.	Electrical Power Systems	Dr. S.L. Uppal and Prof. Sunil S. Rao	Khanna Publishers ISBN: 978-8174092380
5.	A Course in Electrical Power	Sony, Gupta, Bhatnagar	Dhanpat Rai and Sons, New Delhi, 2010 ISBN: 9789350143742
6.	Principles of Power System: including generation, transmission, distribution switchgear and protection	Mehta V K Rohit Mehta	S. Chand & Company Pvt. Ltd., New Delhi ISBN: 978-8121924962
7.	A Textbook of Electrical Technology Vol. III	Theraja, B.L.; Theraja, A.K.	S.Chand and Co. New Delhi ISBN: 9788121924900
8.	Power System Engineering	D.P. Kothari & I.J. Nagrath	McGraw-Hill; ISBN: 978-0070647916
9.	Operation of Restructured Power Systems (Power Electronics and Power Systems)	Kankar Bhattacharya, Jaap E. Daadler, Math H. J. Boolen, Kluwer	Springer; 2001 edition (October 26, 2012) ISBN-10 : 1461355672 ISBN-13 : 978-1461355670

(b) Open Educational Resources:

- 1. https://archive.nptel.ac.in/courses/112/107/112107291/
- 2. https://archive.nptel.ac.in/courses/108/102/108102047/
- 3. http://www.nptelvideos.in/2012/11/power-sys-generation-transmission.html
- 4. http://www.nptelvideos.in/2012/11/energy-resources-and-technology.html
- 5. www.tpud.org/.../An_Introduction_to_Electric_Power_Transmission_Presentation.pdf
- 6. www.nct-tech.edu.lk/Download/.../Performance%20of%20Transmission%20Lines..pd.
- 7. https://www.electrical4u.com/performance-of-transmission-line/
- 8. https://energy.gov/sites/prod/files/2013/07/f2/Transmission_Woodall_0.pdf
- 9. https://www.youtube.com/watch?v=_HxM6DAYQ4U
- 10. https://www.youtube.com/watch?v=CLEptMD9-EI
- 11. https:// https://www.youtube.com/watch?v=ns7FrGHBAFw
- 12. https://www.academia.edu/22504154/Power_System_Generation_Transmission_and_Dist ribution
- 13. http://nptel.iitm.ac.in/courses/108101005
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Electric power engineering handbook on Electric Power Generation, Transmission and Distribution, CRC Press
- 2. Users' Guide
- 3. Manufacturers' Manual of power plant equipment
- 4. Lab Manuals

A)	Course Code	: 2418305(T2418305, P2418305,S2418305)
B)	Course Title	: Python Programming
		(CE, CSE, AIML, ME, ME (Auto)., ELX, ELX (R), MIE, FTS, CRE, CHE, TE, CACDDM, GT, RE)
C)	Pre- requisite Course(s)	:
ח)	Pationalo	

D) Rationale

Python programming has emerged as a popular programming language across wide range of application segments from Scientific to Machine Learning to mobile app development, and so on. Python is a high-level general-purpose programming language.

Because code is automatically compiled to byte code and executed, Python is suitableuse as a scripting language, Web application implementation language, etc.

In Python there are multiple levels of organizational structure: functions, classes, modules, and packages. These assist in organizing code. An excellentand large example is the Python standard library.

The Object-oriented Python provides a consistent way to use objects: in Python it is easy to implement new object types (called classesin object-oriented programming). This introductory course to learn basic Python programming features which can be used as building blocks to develop different kind of applications using Python 3.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Use various data types and operators in formation of expressions.
- **CO-2** Write and execute programs using control statements.
- CO-3 Perform relevant operations on Sequence data types
- CO-4 Create functions in modules
- **CO-5** Use numpy in writing python programs
- **CO-6** Handle data files and exceptions.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	1	-	1	-	-	-	-		
CO-2	1	2	2	1	-	1	-		
CO-3	1	2	2	1	-	1	-		
CO-4	1	2	2	1	-	1	2		
CO-5	1	2	2	1	-	1	-		
CO-6	1	2	2	1	-	1	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

	Course	Course				heme of Stu Hours/Wee	•	
Board of Study	Course Code	Course Title	Classr Instru (C	ction	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
			L	т				
	2418305	Python programming	03	-	04	02	09	06

Note: Prefix will be added to Course Code if applicable (T for theory Paper, P for Practical Paper and S for Term work)

Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)
- Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.
- TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)
- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- **Note:** TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

				A	ssessment S	cheme (Mai	[.] ks)			
Board	Course Title		Theory Ass (TA		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(ТА+ТWА+LA)	
of Study	Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T	
	2418305	Python programming	30	70	20	30	20	30	200	

Note: Prefix will be added to Course Code if applicable (T for theory Paper, P for Practical Paper and S for Term work)

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2418305

Major Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)	
TSO 1b. TSO 1c.	Differentiate between Procedure Oriented P and Object Oriented Programming approach with example. Use the concept of Lvalue and Rvalue Write python program using various data types and operators	Unit 1: Fundamentals of Python Programming Syntax 1.1 Introduction to Python Character Set, Python Tokens, Variables, Lvalue and Rvalue Concepts, and the Use of Comments. 1.20verview of Data Types: Number Types: Integer, Floating Point, Complex Boolean Type Sequence Types: String, List, Tuple None Type Mapping Type: Dictionary Distinction between Mutable and Immutable Data Types 1.3 Understanding Operators: Arithmetic Operators Belational Operators Logical Operators Assignment Operator Augmented Assignment Operators Expressions and Statements Type Conversion and Input/Output Mechanisms Precedence of Operators	CO-1	
	Write Python program using decision making statements	Expression Evaluation Unit-2.0 Conditional and Iterative statements	CO-2	
TSO 2b.	Write Python program using loop structure to solve iterative problems	 2.1 Conditional statements: simple if statement if- else statemen if-elif-else statement 2.2 Iterative statements: while loop for loop range function break and continue statements nested loops 		

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 3a.	Perform various operations on string using string operators and methods	Unit-3.0 String, List, Tuples, set and Dictionary	CO-3
TSO 3b.	Perform various operations on List using list	3.1 String:	
760.0	operators and methods	Indexing	
	Perform various operations on tuples using tuples operators and methods	 string operations (concatenation, repetition, membership & slicing) 	
TSO 3d.	Perform various operations on set using set methods	traversing a string using loops	
TSO 3e.	Perform various operations on dictionary	• built-in functions.	
	using dictionary methods	3.2 Lists:	
		Introduction	
		Indexing in list	
		 list operations: concatenation, repetition, membership & slicing, traversing a list, built- in list functions, linear search on list of numbers and counting the frequency of elements in a list 	
		3.3 Tuples: Creating, initializing, accessing elements, tuple assignment, performing operations on tuples, tuple methods and built-in functions, nested tuples	
		3.4 Set: Creating set, traversing, adding, removing data in set, performing set operations like join, Union intersection, difference	
		3.5 Dictionary: accessing items in a dictionary using keys, mutability of dictionary: adding a new item, modifying an existing item, built-in dictionary functions.	
TSO 4a.	Create and use user defined functions to implement modular programming approach	Unit-4.0 Python Functions, Modules and packages4.1 Functions: types of function (built- in functions,	CO-4
	Differentiate variable scope with example. Import and use Python modules, libraries	functions defined in module, user defined functions), creating user defined function, arguments and parameters, default parameters, positional parameters, Lambda functions, returning value, scope of a variable: global scope, local scope	
		4.2 Modules and Packages: Importing module using 'import' Regular Expressions, Exception Handling, PyPI Python Package Index, Pip Python package manager, Importing Libraries and Functions	
TSO 5a	Write simple Python programs using numpy	Unit-5.0 Numpy	CO-5
TSO 5b.	Use Numpy array in python program	5.1 Introduction to NumPy	
	Use Numpy to solve linear algebra problem.	5.2 Installation of NumPy	
		5.3 NumPy Arrays:	

Major Theory Session Outcomes (TSOs)	 Units Understanding the NumPy array The fundamental data structure in NumPy. Creation of arrays using different methods: np.array(), np.zeros(), np.ones(), etc. Exploring array attributes like shape, size, and dimensione 	Relevant COs Number(s)
	 The fundamental data structure in NumPy. Creation of arrays using different methods: np.array(), np.zeros(), np.ones(), etc. Exploring array attributes like shape, size, 	
	 Creation of arrays using different methods: np.array(), np.zeros(), np.ones(), etc. Exploring array attributes like shape, size, 	
	np.array(), np.zeros(), np.ones(), etc.Exploring array attributes like shape, size,	
	and dimensions.	
	5.4 Array Indexing and Slicing:	
	 Accessing elements and subarrays in NumPy arrays using indexing and slicing. 	
	 Demonstration of the difference between one-dimensional and multi-dimensional array indexing. 	
	5.5 Array Operations:	
	 Performing element-wise operations on NumPy arrays. 	
	 Exploring universal functions (ufuncs) for mathematical operations. 	
	5.6 Linear Algebra with NumPy:	
	 Introduction to linear algebra operations using NumPy. 	
	 Matrix multiplication, determinant, inverse, and solving linear equations. 	
	5.7 File input and output with Numpy	
	5.8 Broadcasting in Numpy	
50 6a. Explain different types of Exceptions in python	 Unit 6: Exception and File Handling in Python 6.1 Exception Handling: syntax errors, exceptions, need of exception handling, user-defined 	CO-6
50 6b. Write Python programs for exception handling in Python	exceptions, raising exceptions, handling	
50 6c. Differentiate different modes of file opening.	exceptions, catching exceptions, Try - except - else clause, Try - finally clause, recovering and continuing with finally, built-in exception	
50 6d. Perform read, Write, Append operations in files	 classes. 6.2 File Handling: text file and binary file, file types, open and close files, reading and writing text files, reading and writing binary files, file access modes 	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2418305

Pract	Practical/Lab Session Outcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. LSO 1.2.	Write, execute and debug simple Python program using Integrated Development and Learning Environment (IDLE) Write and execute simple 'C' program using variables, arithmetic expressions.	1.	 a) Download and Install IDLE. Write and execute Python program to- b) Calculate the Area of a Triangle where its three sides a, b, c are given. s=(a+b+c)/2, Area=square root of s(s-a)(s-b)(s-c) (write program without using function) c) Swap Two Variables d) Solve quadratic equation for real numbers. 	CO-1
LSO 2.1.	Write and execute python programs using conditional statements.	2.	Write and execute Python program to-	CO-2
LSO 2.2.	Write and execute python programs using various types of Loop statements		 a) Check if a Number is Positive, Negative or zero. b) Check whether the given year is a Leap Year. c) Print all Prime Numbers in an Interval. d) Display the multiplication Table based on the given input. e) Print the Fibonacci sequence. f) Find the Factorial of a Number. 	
LSO 3.1.	Write and execute Python program to perform various operations on string using string operators and methods	3.	 Write and execute Python program to- a) Check whether the string is Palindrome b) Reverse words in a given String in Python c) identify in a strings the name, position and counting of vowels. d) Count the Number of matching characters in a pair of string (set) e) Python program for removing i-th character from a string 	CO-2, CO-3
LSO 4.1.	Write and execute Python program to perform various operations on List using List operators and methods	4.	 Write and execute Python program to- a) find largest number in a given list without using max(). b) find the common numbers from two lists. c) create a list of even numbers and another list of odd numbers from a given list. d) To find number of occurrences of given number without using built-in methods. 	CO-2, CO-3
LSO 5.1.	Write and execute Python program to perform various operations on Tuple using Tuple operators and methods.	5.	 Write and execute Python program to- a) find the index of an item of a tuple. b) find the length of a tuple. c) to reverse a tuple. d) Write a Python program to sort a list of tuple by its float element. Sample data: [('item1', '12.20'), ('item2', '15.10'), ('item3', '24.5')] Expected Output: [('item1', '12.20')] 	CO-2, CO-3

Pract	Practical/Lab Session Outcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 6.1.	Write and execute Python program to perform various operations on sets using set methods.	6.	 Write and execute Python program to- a) create an intersection of sets. b) create a union of sets. c) create set difference. d) check if two given sets have no elements in common. 	CO-2, CO-3
LSO 7.1.	Write and execute Python program to perform various operations on Dictionary using Dictionary methods	7.	 Write and execute Python program to- a) Write a Python script to concatenate two dictionaries to create a new one b) Write a Python script to merge two Python dictionaries. c) Write a Python program to combine two dictionary adding values for common keys. d1 = {'a': 100, 'b': 200, 'c':300} d2 = {'a': 300, 'b': 200, 'd':400} Sample output: d{'a': 400, 'b': 400, 'd': 400, 'c': 300}) 	CO-2, CO-3
LSO 8.1.	Write and execute Python program to create user defined functions and call them.	8.	 Write and execute Python program to- a) Write a Python function for reversing a string and call it. b) Write a Python function for calculating compound interest and call it. c) Write a Python function for calculating the factorial of a number and call it to calculate !n/(!r)*!(n-r)) where symbol "! " stands for factorial. 	CO-2, CO-4
LSO 9.1. LSO 9.2.	Write and execute Python program to define a numpy array. Develop and execute Python program Using various types of Numpy operation.	9.	 a) Write a python program to create a Numpy array filled with all zeros b) Write a python program to check whether a Numpy array contains a specified row c) Write a python program to Remove rows in Numpy array that contains non-numeric values d) Write a python program to Find the number of occurrences of a sequence in a NumPy array e) Write a python program to Find the most frequent value in a NumPy array f) Write a python program to Combine a one and a two-dimensional NumPy Array g) Write a python program to Flatten a Matrix in Python using NumPy h) Write a python program to Interchange two axes of an array 	CO-2, CO-5

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
 LSO 10.1. Develop and execute Python program to handle various type of exceptions. LSO 10.2. Develop and execute Python program to perform file operations. 	10.	 a) Using exception handling feature such as tryexcept, try finally- write minimum three programs to handle following types of exceptions. Type Error Name Error Index Error Key Error Value Error IO Error Zero Division Error b) Write Python program to demonstrate file operations. 	CO-6, CO-1, CO-2,

Note: in addition to above listed practical, students are suggested to practice all the examples covered by the teacher during theory sessions.

- L) Suggested Term Work and Self Learning: S2418305 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - a. **Assignments:** Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Crete a shop billing system
- 2. Create income tax calculation system.
- 3. Develop number guessing game (random integer will be selected by the system and the user has to guess that integer in the minimum number of guesses. Maximum 5 guess allowed.)
- 4. Assign numbers to alphabet a-z as (1-26). User will input a word. System will convert in to a number by adding all the individual alphabet of that word.
- 5. Design a basic calculator program that performs arithmetic operations like addition, subtraction, multiplication, and division based on user input.
- 6. Any other micro-projects suggested by subject faculty on similar line.

(Students may use file and sequence data types to develop above listed applications)

c. Other Activities:

- 1. Seminar Topics:
- Tkinter widgets in python
- Python date/time module and its applications
- wxPython and its applications

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix		
	Theory Assessment (TA)** Term Work Assessment (TWA)						ment (LA) [#]
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term V	Vork & Self Assessmen	0	Progressive Lab Assessment	End Laboratory Assessment
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)
	Sem Test			Projects	Activities*		
CO-1	10%	10%	15%	16%	16%	10%	16%
CO-2	15%	15%	15%	16%	16%	15%	16%
CO-3	25%	25%	20%	18%	18%	25%	18%
CO-4	15%	15%	15%	16%	16%	15%	16%
CO-5	25%	25%	25%	18%	18%	25%	18%
CO-6	10%	10%	10%	10% 16% 16%		10%	16%
Total	30	70	20 20 10			20	30
Marks				50			

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Basics of Python Programming syntax	4	CO-1	7	3	2	2
Unit-2.0 Conditional and Iterative statements	6	CO-2	10	3	3	4
Unit-3.0 3.0 String, List, Tuples, set and Dictionary	12	CO-3	18	5	3	10
Unit-4.0 Python Functions, Modules and packages	7	CO-4	10	3	3	4
Unit-5.0 Numpy	12	CO-5	18	4	5	9
Unit-6.0 Exception and File Handling in Python	7	CO-6	7	2	2	3
Total	48	-	70	20	18	32

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

S.		Delevent		PLA/ELA	
	Laboratory Drastical Titles	Relevant COs	Perfor	mance	Viva-
No.	Laboratory Practical Titles		PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Write and execute Python program to-	CO-1	40	50	10
	a) Calculate the Area of a Triangle where its three sides a,b,c				
	are given. s=(a+b+c)/2, Area=square root of s(s-a)(s-b)(s-c)				
	(write program without using function)				
	b) Swap Two Variables				
	c) Solve quadratic equation for real numbers.				
2.	Write and execute Python program to-	CO-2	40	50	10
			10	50	10
	a) Check if a Number is Positive, Negative or zero.				
	b) Check whether the given year is a Leap Year.				
	c) Print all Prime Numbers in an Interval.				
	d) Display the multiplication Table based on the given input.				
	e) Print the Fibonacci sequence.				
	f) Find the Factorial of a Number.				
3.	Write and execute Python program to-	CO-2, CO3	40	50	10
		,			
	a) Check whether the string is Palindrome				
	b) Reverse words in a given String in Python				
	c) identify in a strings the name, position and counting of				
	vowels.				
	d) Count the Number of matching characters in a pair of				
	string (set)				
	e) Python program for removing i-th character from a string				
4.	Write and execute Python program to-	CO-2, CO-3	40	50	10
		,	-		-
	a) find largest number in a given list without using max().				
	b) find the common numbers from two lists.				
	c) create a list of even numbers and another list of odd				
	numbers from a given list.				
	d) To find number of occurrences of given number without				
	using built-in methods.				
5.	Write and execute Python program to-	CO-2, CO-3	40	50	10
	a) find the index of an item of a tuple.				
	b) find the length of a tuple.				
	c) to reverse a tuple.				
	d) Write a Python program to sort a list of tuple by its float				
	element.				
	Sample data: [('item1', '12.20'), ('item2', '15.10'), ('item3',				
	'24.5')]				
	Expected Output: [('item3', '24.5'), ('item2', '15.10'),				
	('item1', '12.20')]				
6.	Write and execute Python program to-	CO-2, CO-3	40	50	10
	a) create an intersection of sets.				
	b) create a union of sets.				
	c) create set difference.				
	d) check if two given sets have no elements in common.				
7.	Write and execute Python program to-	CO-2, CO-3	40	50	10
	· · · •	-			

		Relevant		PLA/ELA	
S.	Laboratory Practical Titles	COs	Perfor	mance	Viva-
No.		Number(s)	PRA*	PDA**	Voce
		Number(3)	(%)	(%)	(%)
	a) Write a Python script to concatenate two dictionaries to				
	create a new one				
	b) Write a Python script to merge two Python dictionaries.				
	c) Write a Python program to combine two dictionary				
	adding values for common keys. d1 = {'a': 100, 'b': 200, 'c':300}				
	d2 = {'a': 300, 'b': 200, 'd':400}				
	Sample output: d({'a': 400, 'b': 400, 'd': 400, 'c': 300})				
8.	Write and execute Python program to-	CO-2, CO-4	40	50	10
	a) Write a Python function for reversing a string and call it.				
	b) Write a Python function for calculating compound interest				
	and call it.				
	c) Write a Python function for calculating the factorial of a				
	number and call it to calculate $!n/(!r)*!(n-r))$ where symbol				
	"!" stands for factorial.		10	50	10
9.	 a) Write a python program to create a Numpy array filled with all zeros 	CO-2, CO-5	40	50	10
	b) Write a python program to check whether a Numpy array				
	contains a specified row				
	c) Write a python program to Remove rows in Numpy array				
	that contains non-numeric values				
	d) Write a python program to Find the number of occurrences				
	of a sequence in a NumPy array				
	 e) Write a python program to Find the most frequent value in a NumPy array 				
	f) Write a python program to Combine a one and a two-				
	dimensional NumPy Array				
	g) Write a python program to Flatten a Matrix in Python using				
	NumPy				
	Write a python program to Interchange two axes of an array		10	50	10
h)	Using exception handling feature such as tryexcept, try finally- write minimum three programs to handle following types of	CO-2, CO-6	40	50	10
	exceptions.				
	viii. TypeError				
	ix. NameError				
	x. IndexError				
	xi. KeyError				
	xii. ValueError				
	xiii. IOError				
i)	xiv. ZeroDivisionError Write and execute Python program to-	CO-1	40	50	10
''	while and execute r ython program to-	CO-1		50	10
	a) Calculate the Area of a Triangle where its three sides a,b,c				
	are given. s=(a+b+c)/2, Area=square root of s(s-a)(s-b)(s-c)				
	(write program without using function)				
	b) Swap Two Variables				
	c) Solve quadratic equation for real numbers.				

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Computer system	Processor Intel Core i5, 4 GB RAM, 15 GB free disk space	All
2.	Integrated Development and Learning Environment (IDLE)	S/w to be downloaded for python 3.11.3 or higher	All

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Introduction to Computing and Problem-Solving using Python	E. Balagurusamy	McGraw Hill Education (India)Pvt. Ltd.1 st Edition /2016
2.	Learning Python Programming	Jeffrey Elkner, Allan B.Downey, Chris Meyers	Samurai Media Limited. 2016
3.	Python Programming	Ashok Namdev Kamthane and Amit Ashok Kamthane	McGraw Hill Education (India) Pvt.Ltd.2020, 2 nd Edition
4.	Programming in Python	Dr. Pooja Sharma	BPB Publications 2017

(b) Online Educational Resources:

- 1. https://docs.python.org/3/tutorial/
- 2. https://www.w3schools.com/python/
- 3. https://www.tutorialspoint.com/python/index.htm

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

Diplon	na in Electrical Engineering	Semester - III	SBTE, Bihar
A)	Course Code	: 2420306(P2420306/S2420306)	
B)	Course Title	: Summer Internship -I (Common For all Programmes)	
C)	Pre- requisite Course(s)	:	

D) Rationale

Diploma students are required to give exposure of their own diploma programme related industrial hardware, software and practices, just after completing one semester, so that they can correlate this industrial exposure with the concept being taught in the branch specific specialized engineering courses in forthcoming semesters. Mentors/Coordinators/ Teachers need to map the academic contents of the programme of study with the activities of this industrial exposure and are advised to follow the 'Whole to Part' approach to make the students aware about the potential industry's expected outcomes & setup ('Whole') from the diploma programme – and then teaching the related concepts ('Part') of the same in subsequent semesters. In this way before actually being exposed to academic input specific to diploma programmes, the students need to be sent to the nearby/local industries and also may be advised to explore information related to their programme of study using different sources related to potential employment opportunities of both wage and self-employment, job function, job position, nearby relevant industries and so on.

The summer internship will provide the direction to the students and also help in mind mapping to plan their futuristic course of action, after passing the diploma. This would also bridge the gap between their virtual imagination about the outcome of the programme and real happenings related to the diploma programme.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Comprehend the practices of identified industry or world of work related to diploma engineering programme of study.
- **CO-2** Map real equipment, processes, product, management, operations etc. to the course of study through various glimpses of input, process and output in different type of industries.
- **CO-3** Identify the probable enterprises /startups for futuristic planning and self-growth.
- **CO-4** Identify the probable job function and job position in their relevant programme of study.

F) Suggested Course Articulation Matrix (CAM):

Course				Programr Outcomes (Programn Outco (PS)	-
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen t of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	-	-	1	-	-	1		
CO-2	3	-	-	1	-	-	1		
CO-3	3	-	-	-	1	-	2		
CO-4	3	-	-	-	1	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

	Course	Course				neme of Stud Hours/Week	•	
Board of Study	Course Code	Course Title	Instru	room uction CI)	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (Cl+Ll+TW+SL)	Total Credits (C)
			L	Т				
	2420306	Summer Internship -I	-	-	02	02	04	02

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

				A	ssessment S	cheme (Mar	ks)		
Board of			Theory Ass (TA		Self-Le Asses	Work & earning sment VA)	Lab Asse (L		(TA+TWA+LA)
Study	Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T/
	2420306	Summer Internship -I	-	-	10	15	10	15	50

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

• Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Suggested Instructional/Implementation Strategies: Mentors/ Coordinators/ Teachers need to plan and implement the summer internship in their respective programme as per the outcome expected from the programme. However in general, summer internship would help in exploring and exposing the student to the below mentioned dimensions of the world of work. These dimensions can further be explored in depth as per the need and advancement in respective programmes in later stages. Mentors/Coordinators/ Teachers need to map the academic contents of the programme of study with the activities of this industrial exposure and are advised to follow the whole to part approach to make the students aware about the potential industry's expected outcomes & setup ('Whole') from the specific diploma programme and then teaching the related concepts ('Part') of the same in subsequent semesters.

- Industrial Layout
- Organizational Structure
- Corporate Communications
- Strategic, Rolling and Developmental plans
- Maintenance Procedures
- Inventory Control and Management System
- Purchase and Store Procedures
- Major Machinery, Tools, Equipment, Devices, Software, Control System etc.
- Product Development, Manufacturing, Packaging and Delivery
- Project Management
- Operation and Maintenance
- Warehouse Management
- Assembly Line
- Quality Assurance and Testing Cell
- Process/ Software Development/ Fabrication/ Construction Work Management
- Testing and Quality Assurance Practices
- Total quality management
- Calliberation and Certification practices
- Safety Practices
- Industrial Acts
- Industrial Grievances
- Behavioural Aspects
- Conduction of Meetings and Discussions
- Sales and Marketing Strategies
- Forecasting and Target Setting
- Production Planning and Control
- Storage Retrieved and Material handling Practices
- Automation and Control Facilities
- Enterprise Resource Planning (ERP)
- Supply Chain
- Customer Satisfaction Strategies
- Finance and Accounts
- Research and Development
- Promotion and Capacity Building Schemes
- Reduce, Reuse and Recycling Efforts and Policies
- Recognitions and Rewards
- After Sale Services
- Promotional Avenues
- Social Corporate responsibilities

S. No.	Criteria of Assessment	% of Weightage
1.	Maintaining the log book after having exposure to	15
	different types of industry/ world of work	
2.	Preparing the list of job functions and job positions of	20
	relevant programme	
3.	Identify the probable enterprise/ startup for futuristic	15
	planning	
4.	Report writing of summer internship as per the	30
	prescribed format	
5.	Presentation of Report	20
	Total	100

Note: S. no. 1 to 3 shall be considered for progressive assessment. While S. No. 4 & 5 shall be considered for end term assessment
