Curriculum of Diploma Programme

in

Electrical Engineering

J.P. Institute Of Technology

Department of Science, Technology and Technical Education (DSTTE), State Govt. of Bihar

State Board of Technical Education (SBTE), Bihar

Semester – I Teaching & Learning Scheme

Course	Category of	CourseTitles			Teachi	ng & Learning So (Hours/Week)	cheme	
Codes	course			Instruction CI)	Lab Instruction	Notional Hours	Total Hours	Total Credits
			L	Т	(LI)	(TW+ SL)	(CI+LI+TW+SL)	(C) 04 06 03 06
2400101	ASC	Basic Engg. Mathematics (ME, ME (Auto), CE, MIE, CSE, AIML, EE, CRE, CHE, ELX, ELX (R))	02	01	-	02	05	04
2400102B	ASC	Applied Physics -B (CSE, AIML, EE, ELX, ELX (R))	03	-	04	02	09	06
2420104	PCC	Basic Electrical Engg.	03	-	04	02	09	06
2415105	BEC	Engg. Drawing & Graphics (MIE, AE, CRE, CE, CHE, FTS, TE, EE, ELX, ELX (R))	-	-	04	02	06	03
2418105	BCC	Fundamentals of IT and C Programming (ELX, ELX (R), AE, FCT, EE)	03	-	04	02	09	06
2420105	BEC	Electrical & Electronics Workshop (EE, ELX, CSE, AIML)	-	-	04	02	06	03
2400008	NRC	Sports, Yoga and Meditation (Common for All Programmes)	-	-	01	01	02	01
2400009	NRC	Open Educational Resources (Non-exam course)	01	-	-	-	01	01
	I	Total	12	1	21	13	47	30

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work)

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies) Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

Semester - I Assessment Scheme

				Assessme	ent Scheme (Marks)			•
	Category ofcourse		Theory Assessment (TA)		Term work & Self-Learning Assessment (TWA)		Lab Assessment(LA)		+TWA+LA
Course Codes		Course Titles	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2400101	ASC	Basic Engg. Mathematics	30	70	20	30	-	-	150
2400102B	ASC	Applied Physics –B (CSE, AIML, EE, ELX, ELX (R))	30	70	20	30	20	30	200
2420104	PCC	Basic Electrical Engg.	30	70	20	30	20	30	200
2415105	BEC	Engg. Drawing & Graphics (MIE, AE, CRE, CE, CHE, FTS, TE, EE, ELX, ELX (R))	-	-	20	30	20	30	100
2418105	BCC	Fundamentals of IT and C Programming	30	70	20	30	20	30	200
2420105	BEC	Electrical & Electronics Workshop (EE, ELX, CSE, AIML)	-	-	20	30	20	30	100
2400008	NRC	Sports, Yoga and Meditation (Common for All Programmes)	-	-	10	-	06	09	25
2400009	NRC	Open Educational Resources (Non-exam course)	25	-	-	-	-	-	25
		Total	145	280	130	180	106	159	1000

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work)

Legend:

Note:

ETA & ELA are to be carried out at the end of the term/ semester.

• Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

•

D) Rationale

This course is an extension of the course based on Mathematics of the first semester namely Basic Engineering Mathematics. The course is designed to inculcate its application in relevant branches of engineering and technology. With calculus, we can find how the changing conditions of a system affect us, and we can control a system. Definite integral is a powerful tool that helps us realize and model the world around us. Differential equations are widely applied to modern natural phenomena, engineering systems, and many other situations. Numerical methods offer approximate but credible accurate solutions to problems that are not readily or possibly solved by closed-form solution methods. On the other hand, Numerical integration is a computational (approximate) approach to evaluating definite integrals. It has a lot of applications in engineering such as in the computation of areas, volumes, and surfaces. It also has the advantage of being easily programmable in computer software. Probability distributions are useful for modeling, simulation, analysis, and inference on varieties of natural processes and physical phenomena. A situation in which an experiment is repeated a fixed number of times can be modeled, engineers need to apply existing knowledge of success and failure to a specific analytical scenario.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of the following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor, and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to

- **CO-1** Demonstrate the ability to solve engineering-related problems based on applications of algebra.
- **CO-2** Use the concept of derivative as a tool to solve engineering-related problems.
- **CO-3** Apply differential calculus to solve branch-specific problems.
- **CO-4** Use the concept of Coordinate geometry to solve branch-specific engineering-related problems.
- **CO-5** Apply techniques and methods of probability and statistics to crack branch-specific problems.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen t of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	-	-	-	-	-	-		
CO-2	3	1	-	-	-	-	-		
CO-3	3	1	1	-	-	-	1		
CO-4	3	1	-	-	-	-	-		
CO-5	3	2	1	1	-	-	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

			Scheme of Study (Hours/Week)					
Course Code	Course Title	Instru	room uction CI)	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	Т					
2400101	Basic Engineering Mathematics	02	01	-	02	05	04	

Legend:

CI: Classroom Instruction (Includes different instructional/ implement at ion strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/ practical performances / problem-based experiences in laboratory, workshop, field or other locations using different instructional/ Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, Spoken Tutorials, online educational resources etc.

C: Credits= (1xClhours) + (0.5xLlhours) + (0.5xNotionalhours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment S	cheme (Mar	ks)		
		Theory Ass (TA		Self-Le Asses	Work& earning sment WA)	Lab Asse (L	ssment) VI+VML+	+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2400101	Basic Engineering Mathematics	30	70	20	30	-	-	150

Legend:

PTA: Progressive Theory Assessment in the classroom (includes class test, mid-term test, and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro-projects, industrial visits, self-learning, any other student activities, etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignments, micro-projects, seminars, and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria for internal as well as external assessment may vary as per the requirement of the respective course. For valid and reliable assessment, the internal faculty should prepare a checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW), and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to the attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020-related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS), and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400101

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b. TSO 1c. TSO 1d. TSO 1e. TSO 1f.	Find the solution of a system of equations in three unknowns by applying Cramer's rule. Solve simple given problems based on the Algebra of matrices. Find the inverse of the matrix by applying the concept of Adjoint of the matrix. Find a solution of simultaneous equations in three variables using the concept of the Matrix Inversion method. Solve problems based on the sum, and subtraction of Vectors. Solve simple problems related to Scalar and Vector product of vectors. Solve simultaneous equations by using concepts given in Ancient Indian Mathematics. (IKS)	 Unit-1.0 Algebra Determinant 1.1 Concept and properties of determinant. 1.2 Solutions of simultaneous equations in three Unknowns by Cramer's rule. Matrices 1.3 Algebra of matrices (Addition, Subtraction, Multiplication by Scalar, and Multiplication of Two matrices). 1.4 Transpose, Adjoint and Inverse of Matrix. 1.5 Solutions of simultaneous equations of a Matrix of order 3 x3 by Inversion method. Vectors 1.6 Position vector. 1.7 Algebra of Vectors (Addition, Subtraction, Scalar Multiplication with vector). 1.8 Scalar product. 1.9 Vector product. 1.10 Algebra in Indian Knowledge System: Solution of simultaneous equations (Indian Mathematics) (IKS). 	CO1
TSO 2a.	Define the concept of a function and its types.	Unit-2.0 Differential Calculus	CO2
TSO 2c. TSO 2d. TSO 2e. TSO 2f. TSO 2g.	Solve simple problems based on Domain and range of function. Evaluate problems of limit function based on Indeterminate form. Check the continuity of a function at a point. Find the differentiation of some simple functions (sinx, cosx, tanx, and e^x) by the first principle. Calculate the derivative of given Algebraic, trigonometric, and exponential functions. Find the derivative of the given two functions' sum, product, and quotient. Find the differentiation of given composite functions by applying the concept of the Chain rule.	Function and Limit2.1Concept of function.2.2Different type of functions.2.3Domain and Range of Function.2.4Concept of Limits and its evaluation.Continuity2.5Concept of continuity with simple problems.Differentiation2.6Differentiation by First Principle.2.7Differentiation of Algebraic, trigonometric, Exponential, and Logarithmic functions.2.8Differentiation of sum, product, and quotient of two functions.2.9Differentiation of composite functions by Chain Rule.2.10Logarithmic differentiation.	

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	Find the derivative of Logarithmic, Implicit, and Parametric functions. Familiar with the concept of calculus given in Indian Mathematics. (IKS)	 .11 Implicit differentiation. .12 Differentiation of Parametric Function .13 Calculus in Indian Knowledge System: Discovery of Calculus by Indian Astron (Indian Mathematics). (IKS) 	ns. The
ТSO 3b. TSO 3c. TSO 3d.	Find the second-order derivative of given simple functions. Solve simple problems based on Rolle's Theorem and Mean Value Theorem. Apply the concept of Rate of change to solve simple problems related to velocity, and acceleration. Apply rules of derivative to solve given applied problems related to tangent and normal. Apply rules of derivative to solve applied problems based on Maxima-Minima and Radius of curvature.	 Jnit-3.0 Application of Differential Calculu .1 Successive differentiation up to secon .2 Rolle's Theorem and Mean Value Theo (without proof) with examples. .3 Rate of change of quantities. .4 Equation of Tangent and Normal. .5 Maxima and Minima. .6 Radius of curvature. 	d order.
TSO 4b. TSO 4c. TSO 4d. TSO 4e. TSO 4f.	Ellipse for engineering applications.	 Init-4.0 Co-ordinate Geometry Co-ordinate systems Introduction of Co-ordinate Systems. Straight lines Slope of a line, the angle between two Various forms of Straight Lines Point-slope form, Two-point form, Slo intercept form, Intercept form, Norma General form. Perpendicular distance of a line from a perpendicular distance between two plines. Geometry in Sulabasutras in Indian Km System (construction of the square, ci square). (Indian Mathematics). Conic Section Introduction of Conic-Section. Equation of Circle in standard form. 	pe al form, a point, parallel nowledge ircling the
TSO 5b.	 Compute the probability of given simple problems based on the Addition and Multiplication theorem. Evaluate the Mean, Median, and Mode of the given data for engineering applications. Calculate the Range, Variance, and standard deviation of given data for engineering applications. 	 Init-5.0 Probability and Statistics Probability .1 Concept of Probability. .2 Addition and multiplication theorems Probability. The measure of Central Tendency .3 Mean, Median, Mode. Measure of Dispersion .4 Range, Variance, Standard Deviation. 	of

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<i>TSO 5d.</i> Calculate the Coefficient of variance of given data for engineering applications.	5.5 Coefficient of Variation.	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Tutorials and Outcomes:

	Outcomes	S. No.	Tutorials Titles	Relevant COs Number(s)
1.2	Determine the value of the determinant by using available open-source software. Determine the inverse of a non-singular matrix by using open-source software. Apply the Matrix Inversion method to determine currents through various branches of given electrical networks. Determine the resultant force applied at a particle using properties of vector for a given engineering problem.	1.	 Value of determinant of order 3, 4, and higher using open source software. Inverse of the non-singular matrix using open-source software. Calculation of current in electrical networks by Matrix Inversion method. Geometrical interpretation of operations of vector algebra. 	CO1
2.2 2.3	Geometrically represent the domain and range of the given Modulus function, Signum function, and Floor function. Verify geometrically the continuity of a given function at a point. Determine the concavity and convexity of a given continuous function for a given engineering application. Find the acceleration of the given moving body at a time t.	2.	 Geometrical interpretation of domain and range of a function. Geometrical interpretation of limit and continuity. Branch-specific engineering application of derivative. Branch-specific engineering application of derivative of a parametric function. 	CO2
3.2 3.3 3.4 3.5	Determine the maximum height of a projectile trajectory using Roll's theorem. Use Lagrange's Mean Value theorem to find the point at which the slope of the tangent becomes equal to the slope of the secant through its endpoints. Use the concept of derivative to find the slope of a bending curve for a given engineering problem. Use the concept of tangent and normal to solve the given problem of Engineering Drawing. Use the concepts of Maxima and Minima to obtain optimum value for a given engineering problem. Use the concept of the radius of curvature to solve a given branch-specific engineering	3.	 Geometrical Interpretation of Rolle's Theorem. Geometrical Interpretation of Lagrange's Mean Value theorem. Branch-specific engineering application of rate of change of quantities. Branch-specific engineering applications of tangent and normal. Branch-specific engineering applications of maxima and minima. Engineering applications of Radius of curvature. 	CO3
	Apply the concept of Gradient to draw graphs in engineering drawing. Use the given form of a straight line to calculate the speed, distance, and time of a moving object.	4.	 Geometrical interpretation of Gradient. Geometrical Interpretation of lines in various forms. Geometrical interpretation of the perpendicular distance of a line. 	CO4

	Outcomes		Outcomes S. Tuto		Tutorials Titles	Relevant COs Number(s)
4.3	Use the concept of Ellipse to prepare a Model of the path of the Planet and its foci.		 Geometrical representation of conic- section. 			
5.1	Use the concept of probability to solve given problems based on Board and playing cards.	5.	 Applications of Probability and related theorems. Applications of Mean, Median, and 	CO5		
5.2	Calculate the Standard Deviation for Concrete with the given data.		Mode for applied problems.			

- L) Suggested Term Work and Self-Learning: S2400101 Some sample suggested assignments, micro-projects, and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - 1. Solve the simultaneous system of equations in two variables by Matrix Inversion Method. Write down a Mathematical program using any open-source software to verify the result.
 - 2. A rigid body is subjected to multiple forces acting at different points. Apply vector technique to calculate the net moment or torque acting on the body. Discuss the equilibrium condition and the significance of the moment in terms of structural integrity and mechanical system using open-source software.
 - 3. Represent the Graph of the Trigonometric function and logarithmic function on GeoGebra interpret the nature of the graph and Make a pdf file.
 - 4. Find the derivative of $y = x^{sinx}$ and visualize the graph of the function and its derivative using any opensource software geometrically.
 - 5. A window in the form of a rectangle surmounted by a semi-circular opening. The total perimeter of the window to admit maximum light through the whole opening. Prepare a model using the concept of Maxima and Minima for the above problem and verify the result.
 - 6. Find the curvature of x = 4cost and y = 3sint, at what point on this ellipse does the curvature have the greatest and least values? What are the magnitudes? Visualize the result graphically using any open-source software.
 - 7. When a double-sided right circular cone is intersected by a plane, different types of conic sections are generated. Represent all these conic sections on GeoGebra and write down their equation.
 - 8. Explain how parabolic reflectors are used in engineering applications such as Satellite Dish Antennas or headlights.
 - 9. By Collecting the Data of the Last 5 IPL series, Calculate the probability of winning a match by any two teams.
 - 10.Collect the Data of Marks obtained by your class in 1st class test. Compute the Mean, Median, Mode, and variance of the data and interpret the result.

b. Micro Projects:

- 1. Prepare charts displaying the properties of determinants and Matrices.
- 2. Prepare a chart for the use of Vector algebra to solve problems of the rate of change of the mass of a fluid flow.
- 3. Draw the graph of functions like x^2 , sinx, cosx, tanx, and e^x etc analytically on graph paper and verify using suitable open-source software like Sage Math, Math3d, GeoGebra, Wolfram Alpha, and Dplot and prepare a pdf file.

- 4. Collect at least 10 engineering applications for each Limits, Continuity, and Differentiability and prepare a PDF file.
- 5. Prepare a chart consisting of 8-10 engineering-related functions whose derivative does not exist.
- 6. Prepare a model showing the application of Rolle's Theorem to determine the projectile trajectories of maximum height.
- 7. Prepare a chart consisting of any 10 applications of the Mean value theorem related to real-world problems.
- 8. Model to maximize the volume of a box made of a rectangular tin sheet by cutting off squares of the same size from each corner and folding them up. Also, design models for at least 5 similar situations and prepare a soft file with animation.
- 9. Prepare models using the concept of tangent and normal to bending of roads in case of sliding of a vehicle.
- 10.Prepare models using the concept of the radius of curvature to bending of railway track.
- 11.Make a short video of duration 5-7 minutes for the use of Derivative to calculate the profit and loss in business using graphs.
- 12.Download 5-7 videos based on applications of Derivative to check the temperature variation, find the range of magnitudes of the earthquake, etc. Watch them and write a report to detail the mathematical steps involved.
- 13. Prepare the Charts of formulae showing different forms of straight lines for engineering applications.
- 14.Draw the graph for the standard equations of Circle, Parabola, Ellipse, and Hyperbola on the Chart paper using any open-source software and make a file.
- 15.Prepare the Charts consisting tree diagram to find the probability of a given event.
- 16.Collect the data of World of Work and find the mean, mean deviation, and standard deviation for that data using any open-source software of Statistics and make a soft copy.
- 17.Download 5-7 videos based on applications of probability for the weather forecast, watch them, and write a report to detail the mathematical steps involved.

c. Other Activities:

- 1. Seminar Topics:
 - Applications of Integral calculus in control systems, dynamics, and vibrations.
 - Applications of determinants and matrices in graphic design to make digital images.
 - Application of determinants and matrices for calculating the battery power outputs.
 - Application of Vector algebra in engineering mechanics.
 - Application of limit and continuity to measure the strength of the magnetic field and electric field.
 - Applications of Derivatives for engineering & technology.
 - Application of radius of curvature for Engineering and Science.
 - Applications of Derivatives in the economy to compute the level of output at which the total revenue is the highest, the profit is the highest, and (or) the lowest, etc.
 - Applications of Coordinate geometry to design of athletic tracks, recreational parks, building plans, roundabouts, Ferris wheels.
 - Application of ellipses to be used to orbits of planets, satellites, moons comets, etc.
 - Probability and statistics: Civil engineering, estimation of model uncertainties, identification of probability distribution.
- 2. Visits: Visiting the following places would provide students an opportunity to see the application of various branches of mathematics in different fields. This will also help students to comprehend the career opportunities available in the field of mathematics.
 - Visit to a mathematics museum.
 - Visit a mathematics research institute.
 - Visit to a mathematics laboratory.
 - Visit to a Data Science Center.
 - Visit the mathematics department of a college or university.

- Visit a mathematics software company.
- Visit to a Cryptography Company.
- Visit to a Space Agency.
- Visit to a Game Studio.
- Visit to a mathematics library.
- Attend Mathematical conferences on real-world problem-solving.
- Participation in mathematics competitions.
- 3. Self-Learning Topics:
 - Participate in MOOCs based Course on Matrix offered by Foreign University: Methods and Applications.
 - Participate in an MOOCs-based Course on Differential Calculus: Methods and Applications.
 - Participate in MOOC-based Courses on Probability and its Engineering applications.
 - Participate in MOOC-based Courses on Statistics and its Engineering applications.
 - Watching videos on applications of coordinate geometry to Real-world problems.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use the appropriate assessment strategy and its weightage in theory, laboratory, and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	ourse Evalua	tion Matrix			
	Theory Asses	sment (TA)**	Term W	ork Assessm	nent (TWA)	Lab Assessment (LA) [#]		
Cos	ProgressiveEnd TheorTheoryAssessmentAssessment(ETA)(PTA)Class/Mid		Term \	Work & Self Assessmer	-	Progressive Lab End Labora Assessment Assessme		
	Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)	
CO-1	20%	20%	15%	15%	25%	-	-	
CO-2	15%	20%	20%	20%	15%	-	-	
CO-3	20%	15%	15%	15%	10%	-	-	
CO-4	20%	20%	25%	25%	25%	-	-	
CO-5	25%	25%	25%	25%	25%	-	-	
Total Marks	30	70	20	20 20 10			-	
				50				

Legend:

*: Other Activities include self-learning, seminars, visits, surveys, product development, software development, etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentages given are approximate

• In the case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided among all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises questions related to the achievement of each CO.

N) Suggested Specification Table for End Semester Theory Assessment: The specification table represents the reflection of sample representation of the assessment of the cognitive domain of the full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Algebra	8	CO1	12	4	4	4
Unit-2.0 Differential Calculus	10	CO2	14	4	8	2
Unit-3.0 Application of Differential Calculus	8	CO3	12	4	4	4
Unit-4.0 Co-ordinate Geometry	10	CO4	14	4	6	4
Unit-5.0 Probability and Statistics	12	CO5	18	4	6	8
Total	48	-	70	20	28	22

Note: A similar table can also be used to design class/mid-term/ internal question papers for progressive assessment.

O) Suggested AssessmentTable for Laboratory (Practical): (Not Applicable)

P) Suggested Instructional/ Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lectures, Tutorial, Case Methods, Group Discussions, Industrial visits, Industrial Training, Field Trips, Portfolios, Learning, Role Play, Live Demonstrations in Classrooms, Labs, Field Information, and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	High-end computers	Processor Intel Core i7 with Compilers and Programming Languages; RAM 32 GB, DDR3/DDR4, HDD 500 GB, OS Windows 10.	All
2.	Software	Scientific Calculators, Graphing Calculator, SCILAB, GraphEq^2.13, Microsoft Mathematics, GeoGebra, Math3D	1,2,3,4,5
3.	Printer	High-Speed Duplex Printer	
4.	Scanner	Handheld 3D scanner, Accuracy up to 0.1 mm, Resolution up to 0.2 mm, Wireless technology with an inbuilt touch screen and battery, Extended field of view for capturing both large and small objects.	

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Elementary Engineering Mathematics	B. S. Grewal	Khanna Publishers,15th Edition. ISBN: 978-81-7409-257-1
2.	Engineering Mathematics (Third edition)	Croft, Anthony	Pearson Education, New Delhi, 2014. ISBN 978-81-317-2605-1
3.	Calculus and Its Applications	Marvin L. Bittinger David J. Ellenbogen Scott A. Surgent	Addison-Wesley 10th Edition ISBN-13: 978-0-321-69433-1
4.	Calculus and Analytic Geometry	G. B. Thomas, R. L. Finney	Addison Wesley, 9th Edition, 1995. ISBN 978-8174906168
5.	Understanding Engineering Mathematics	John Bird	Routledge; First Edition ISBN 978-0415662840
6.	Advanced Engineering Mathematics	Krezig, Ervin	Wiley Publ., New Delhi,2014, ISBN: 978-0-470-45836-5
7.	Indian Mathematics Engaging with the World from Ancient to Modern Times	George Gheverghese Joseph	World Scientific Publishing Europe Ltd. 57ISBN 978-17-86340-61-0
8.	A Modern Introduction to Ancient Indian Mathematics	T.S. Bhanumurthy	New Age International Private Limited, 1 January 2008 ISBN- 10. 812242600X, ISBN- 13. 978-8122426007
9.	Mathematics-I	Deepak Singh	Khanna Book Publishing Co. (P) Ltd. ISBN: 978-93-91505-42-4
10.	Mathematics-II	Garima Singh	Khanna Book Publishing Co. (P) Ltd. ISBN: 978-93-91505-52-3
11.	Consider Dimension and Replace Pi	M.P. Trivedi and P.Y. Trivedi	Notion Press; 1 st edition (2018), ISBN: 978-1644291795
12.	Sansar Ke Mahan Ganitagya	Gunakar Muley	First Edition, Rajkamal Prakashan, ISBN-10. 8126703571, ISBN-13. 978- 8126703579.

(b) Online Educational Resources:

- 1. https://ocw.mit.edu/
- 2. https://tutorial.math.lamar.edu/
- 3. https://www.khanacademy.org/
- 4. https://www.feynmanlectures.caltech.edu/
- 5. https://www.wolframalpha.com/
- 6. https://www.dplot.com/
- 7. https://www.geogebra.org/
- 8. https://www.easycalculation.com/
- 9. https://www.scilab.org/
- 10. https://www.desmos.com/
- 11. https://nptel.ac.in/
- 12. https://swayam.gov.in/
- 13. https://ndl.iitkgp.ac.in/
- 14. https://parakh.aicte-india.org/
- 15. https://ekumbh.aicte-india.org/
- 16. https://learnengg.com/LE/Index
- 17. https://ncert.nic.in/textbook.php
- 18. https://nios.ac.in/online-course-material/sr-secondary-courses/mathematics-(311).aspx

Note: Teachers are requested to check the Creative Commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Online Mathematics Courses.
- 2. Mathematics Communities and Forums.
- 3. Mathematics Journals.
- 4. Mathematics Podcast.
- 5. Mathematics Tutorials.
- 6. Mathematics Quizzes.
- 7. Mathematics Animation.
- 8. Mathematics Simulations.
- 9. Mathematics Games.
- 10. Mathematics Puzzles.
- 11. Mathematics Brain Teasers.
- 12. Mathematics Apps.
- 13. Mathematics Blog.
- 14. Mathematics Challenges.

- A) Course Code : 2400102B (T2400102B/P2400102B/S2400102B)
- B) Course Title : Applied Physics B (CSE, AIML, EE, ELX, ELX (R))
 C) Pre- requisite Course(s) :

:

D) Rationale

Physics is the natural science that studies the fundamental principles governing matter, energy, space, and time. Engineering physics is a branch of applied physics that focuses on the application of physics principles to engineering problems. Graduates of diploma engineering programs are expected to have a solid foundation in physics that they can apply to real-world problems, including in industrial settings. This curriculum aims to prepare students to be successful in the workforce by providing them with a deep understanding of physics concepts and their practical applications, including in industrial settings. This curriculum also includes examples of industrial applications of physics principles in areas such as robotics, electrical power generation and transmission, digital electronics and communication, and semiconductor technology. This course will help the diploma engineers to apply the basic concepts and principles of physics for solving various broad-based engineering problems and comprehend different state of art technology-based applications.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Estimate the errors in measurements of physical quantity with precision.
- **CO-2** Apply the concept of waves for various engineering applications involving wave dynamics.
- **CO-3** Apply the concepts of electromagnetics in engineering applications.
- **CO-4** Use semiconductor devices for various electronics related applications.
- **CO-5** Apply the basic concepts of modern physics for solving engineering problems.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes(POs)										
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2			
CO-1	3	-	-	1	-	1	1					
CO-2	3	1	1	1	-	1	1					
CO-3	3	2	1	1	1	1	1					
CO-4	3	2	1	1	1	1	1					
CO-5	3	1	1	1	1	1	2					

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

					neme of Study Hours/Week)			
Course Code	Course Title	Classroom Instruction (CI)		Instruction Instruction		Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	Т					
2400102B	Applied Physics- B	03	-	04	02	09	06	

Legend:

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

H) Assessment Scheme:

			A	ssessment S	cheme (Mar	·ks)		
		Theory Assessment (TA)		Self-Le Asses	Work & earning sment VA)	Lab Asse (L		(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2400102B	Applied Physics- B	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400102B

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b. TSO 1c. TSO 1d. TSO 1e.	Distinguish between fundamental and derived physical quantity. Estimate the errors in the measurement of given physical quantity. Derive dimensional formula of given physical quantity. Apply dimensional analysis for inter conversion of units. Establish relation among physical quantities using dimensional analysis. Use dimensional analysis to check the correctness of a given equation.	 Unit-1.0 Unit and Measurements 1.1 Physical quantities, fundamentals and derived units and system of units 1.2 Accuracy, precision and errors (systematic and random) in measurements, Method of estimation of errors (absolute and relative) in measurement, propagation of errors, significant figures 1.3 Dimensions and dimensional formulae of physical quantities, Principle of homogeneity of dimension in an equation 1.4 Applications of dimensions: conversion from one system of units to other, corrections of equations and derivation of simple equations. 1.5 Ancient astronomical instruments: Chakra, Dhanuryatra , Yasti and Phalaka yantra . (IKS) 	CO1
TSO 2b. TSO 2c. TSO 2d.	Explain the various terms related to SHM. Distinguish between mechanical and electromagnetic waves with examples. Differentiate between longitudinal and transverse waves with examples. Find the relation between the terms used to describe wave motion. Explain the principle of Superposition of waves	 Unit-2.0 Simple Harmonic and Wave Motion 2.1 Periodic and Oscillatory Motion 2.2 Simple Harmonic Motion (SHM): Displacement, velocity, acceleration, time period, frequency and their interrelation 2.3 Types of waves: Mechanical and Electromagnetic, Transverse and longitudinal waves, wave velocity, frequency and wave length and their relationship, wave equation, amplitude, phase, phase difference, Superposition of waves 	CO2
TSO 3b. TSO 3c. TSO 3d.	Derive an expression for electric field experienced by electric charge in the vicinity of another electric charge(s). Differentiate between electric potential and potential difference. Apply Gauss' law to find the electric field intensity due to charge bodies. Describe factors affecting the capacitance of a given capacitor. Find the expression for magnetic field caused by current carrying circular wire at the center.	 Unit-3.0 Electrostatics, Electromagnetism and Electric Current 3.1 Electric Charge, Coulomb's law, Electric field, Electric lines of force and their properties, Electric flux, Electric potential and potential difference, Electric dipole 3.2 Gauss' law, electric field intensity due to straight charged conductor, charged plane sheet and charged sphere 3.3 Dielectric, Capacitance of capacitor (parallel plate), Factor affecting capacitance of capacitors 3.4 Magnetic field and its units, Biot Savart Law Magnetic field due to current caring wire: 	CO3

Ma	ijor Theory Session Outcomes (TSOs)		Units	Relevant
				COs Number(s)
	Explain Faraday's law of electromagnetic induction and Lenz's with applications. Explain the terms required to describe the AC current	3.5 3.6	straight and circular wire, Lorentz force (force on moving charge in magnetic field) Magnetic flux, Faraday's law of electromagnetic induction, Lenz's law, Self and Mutual induction, eddy current, motional emf DC and AC currents, Average, rms and Peak value of AC current	
	Distinguish material on the basis of band gap. Explain the various terms related to movement of charge carrier inside the		t-4.0 Semiconductor Physics Energy band and band gap, insulator, semi- conductor, conductor	CO4
TSO 4c.	semiconductors. Explain the formation of depletion layer in a given pin junction.	4.2 4.3	Intrinsic and Extrinsic semiconductors, Drift velocity, drift and diffusion current, Mobility, current density, law of mass action. Depletion layer and barrier Potential, p-n	
TSO 4d.	Use V-I characteristic of explain the working of given p-n junction device.	4.4	junction and V-I characteristics, Half wave and full wave rectifier Photocells, Solar cells; working principle and engineering applications.	
TSO 5a.	Apply the concept of photoelectric effect to explain the of photonic devices.	Unit	t-5.0 Modern Physics	CO5
	Explain Laser, components of laser and its various engineering applications. Explain propagation of light in optical fiber and applications of optical fiber.	5.1 5.2	Photoelectric effect; threshold frequency, work function, Stopping Potential, Einstein's photoelectric equation. Lasers: Energy levels, ionization and excitation	
TSO 5d.	Describe the properties of nanomaterials and its various applications.		potentials; spontaneous and stimulated emission; population inversion, pumping methods, types of lasers): He Ne Laser, p-n junction diode laser, engineering and medical applications of lasers.	
	najor TSO may require more than one Theory s	5.3	Optical fibers: Total internal reflection, acceptance angle and numerical aperture, Optical fiber types, applications in telecommunication, medical and sensors. Nanotechnology: Properties (optical, magnetic and dielectric properties) of Nanomaterials and its application, Bhasma (Ancient Ayurveda, IKS)	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400102B

	Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1.	Use Vernier caliper to measure the known and unknown dimensions of a given small object.	1.	Vernier caliper	CO1
LSO 1.2.	Estimate the mean absolute error up to two significant figures.			
LSO 2.1.	Use screw gauge to measure the diameter/ thickness of a given object.	2.	Screw gauge	CO1
LSO 2.2.	Estimate the mean absolute, relative and percentage errors up to three significant figures.			
LSO 3.1.	Use Spherometer to measure radius of curvature of given convex and concave mirror/surface.	3.	Spherometer	CO1

	Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 3.2.	Estimate errors in the measurement.			
LSO 4.1.	Measure the variation of Time period with Mass of a given spring Oscillator.	4.	Spring Oscillator	CO2
LSO 4.2.	Determine the spring constant of a given spring.			
LSO 5.1.	Determine the time period of oscillation of given bar pendulum.	5.	Bar Pendulum	CO2
LSO 6.1.	Determine the V-I characteristics of a given p-n junction device.	6.	p-n junction diode	CO4
LSO 7.1.	Determine the capacitance of a given parallel plate capacitor.	7.	Parallel Plate capacitor	CO3
LSO 8.1.	Determine the inverse square law relation between the distance of photocell and light source v/s intensity of light source.	8.	Photo-electric cell	CO5
LSO 9.1.	Determine the Numerical Aperture (NA) of a given step index optical fiber.	9.	Numerical Aperture of an optical fiber.	CO5
LSO 10.1.	Measure wavelength of a He-Ne/diode laser by using a plane diffraction grating.	10.	He-Ne/diode laser	CO5
LSO 11.1.	Determine the V-I characteristics of given solar cell under various illumination condition	11.	Solar cell (virtual experiment)	CO4
LSO 12.1.	Determine the V-I characteristics of a given p-n junction device under various temperature conditions.	12.	p-n junction diode (virtual experiment)	CO4
LSO 13.1	 Plot the graph between KE of Photo electron v/s frequency of incident light 	13.	Photo electric effect (virtual lab experiment)	CO5
LSO 13.2.	Determine the value of Plank's Constant (<i>h</i>) from the graph between KE v/s frequency of incident light.			
LSO 13.3.	Determine the variation of stopping potential w.r.t frequency of incident photon			
	Determine the wavelength of different spectral lines of Hydrogen spectra	14	Emission Spectra of Hydrogen (virtual lab experiment)	CO5
LSO 15.1.	Find the variation in magnitude and direction of emf induced in a coil due to change in magnetic flux.	15	Electromagnetic induction (virtual lab experiment)	CO4

- L) Suggested Term Work and Self Learning: S2400102B Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs such as,
 - 1. Check the correctness of given equations, using dimensional analysis.
 - 2. Find phase difference between particles executing SHM with different initial conditions.
 - 3. Determine the magnitude and direction of the net electrostatics force acting on any one charge, when 'n' point charges of charge q are placed at the vertices of given polygon with sides 'a' cm.
 - 4. Find the electric field intensity at point due to different type of distribution of charges.
 - 5. Two concentric conducting spheres have radii of r1 and r2 (r1<r2). The inner sphere has charge q1 and the outer sphere has charge q2. Calculate electric field between the two spheres.
 - 6. Explain the significance of determining the forward and reverse bias V-I characteristics of any p-n junction diode with example.

- 7. For a given V-I characteristic graph p-n junction diode, determine the dynamic and static resistance.
- 8. Apply the concept of work function in various device and instruments, such as photodiodes, solar cells and electron microscope.

b. Micro Projects:

- 1. Make prototype Vernier calipers and screw gauge of desired LC,
- 2. Fiber optics: Demonstrate the phenomenon of total internal reflection.
- 3. LASER: Prepare model to demonstrate the properties and applications of LASER.
- 4. Use physics lab mobile application for demonstration of various concepts of physics.
- 5. Use Arduino board and with embedded sensors to measure the physical quantities.
- 6. Make prototype parallel plate capacitor and measure capacitance.
- 7. Make working model to demonstrate Lenz Law.
- 8. Prepare model to demonstrate DC and AC current.
- 9. Demonstrate the conversion of light energy into electric energy by using LED(s).
- 10. Waves in string: standing waves in string using woofer loudspeaker.
- 11. Use smartphone to measure the different physical quantity with the sensor applications.
- 12. Use open source simulation software such as SCILAB and PheT to demonstrate SHM/wave, Phase difference between two waves and superposition of waves.

c. Other Activities:

- 1. Seminar Topics:
 - Needs of measurements in engineering and science.
 - Optical fibers: Construction and application in communication systems.
 - Synthesis and applications of nanomaterials
 - Applications of SHM/wave in daily life.
 - Ohm's Law and its applications in series and parallel circuits.
 - Kirchhoff's Laws and applications
 - Power and Energy in Electrical Circuits
 - Resistivity and Conductivity:
 - Electrical Safety and Hazard Prevention
 - Laser applications in Computer peripherals/ communications/ robotics
 - Holography.
- 2. Visits: Visit nearby industry with Instrumentation, production and Laser/optical fibers facilities. Prepare report of visit with special comments Instrumentation technique and material used.
- 3. Self-Learning Topics:
 - Vectors and its properties with applications
 - Diffraction of light
 - Newton's Laws of motion, momentum, inertia, impulse
 - Continuous and discrete charge distribution
 - Force, work, energy, power, work-energy theorem, law of <u>conservation of energy</u>
 - Frictions and its types
 - Relation between Electric field (E) and potential (V)
 - Work done in various Processes, Adiabatic constant (Cp/Cv = Υ), Mayer's formula (Cp Cv = R)
 - Ultrasonic
 - Microwave and electromagnetic wave.
 - Ruby Laser

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix								
	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assessment (LA) [#]			
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term \	Work & Self Assessmei	-	Progressive Lab Assessment	End Laboratory Assessment		
	Class/Mid		Assignments	Assignments Micro Other			(ELA)		
	Sem Test			Projects	Activities*				
CO-1	10%	10%	10%	20%	-	20%	20%		
CO-2	15%	20%	10%	20%	25%	20%	20%		
CO-3	25%	25%	30%	20%	25%	15%	20%		
CO-4	25%	25%	30%	20%	25%	15%	20%		
CO-5	20%	20%	20% 20% 25%		30%	20%			
Total	30	70	20 20 10			20	30		
Marks				50		1			

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

• The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom	COs	Marks	Remember	Understanding	Application
	Instruction	Number(s)		(R)	(U)	& above
	(CI)					(A)
	Hours					
Unit-1.0 Unit and Measurements	6	CO1	8	2	2	4
Unit-2.0 Simple Harmonic and Wave motion	8	CO2	12	4	4	4
Unit-3.0 Electrostatics, Electromagnetism and Electric current	12	CO3	20	6	6	8
Unit-4.0 Semiconductor Physics	12	CO4	18	4	6	8
Unit-5.0 Modern Physics	12	CO5	12	4	4	4
Total	48	-	70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

S. Performance No. Laboratory Practical Titles COs Number(s) PRA* PDA*			Delevent		PLA/ELA	
No. PRA* (%) PRA* (%) PPA* (%)	S.	Laboratory Bractical Titles	Relevant	Perfor		Viva-
Image: Constraint of the second sec	No.			PRA*	PDA**	Voce
2. Screw gauge CO1 60 30 3. Spherometer CO1 60 30 4. Spring Oscillator CO3 50 40 5. Bar Pendulum CO2 50 40 6. p-n junction diode CO3 40 50 7. Parallel Plate capacitor CO3 50 40 8. Photo-electric cell CO5 40 50 9. Numerical Aperture of an optical fiber. CO5 50 40 10. He-Ne/diode laser CO5 60 30 11. Solar cell (virtual experiment) CO5 60 30 12. p-n junction diode (virtual experiment) CO5 60 30 13. Photo electric effect (virtual lab experiment) CO5 60 30			Number(S)	(%)	(%)	(%)
3.SpherometerCO160304.Spring OscillatorCO350405.Bar PendulumCO250406.p-n junction diodeCO340507.Parallel Plate capacitorCO350408.Photo-electric cellCO540509.Numerical Aperture of an optical fiber.CO5504010.He-Ne/diode laserCO5603011.Solar cell (virtual experiment)CO5603012.p-n junction diode (virtual experiment)CO5603013.Photo electric effect (virtual lab experiment)CO56030	1.	Vernier caliper	C01	60	30	10
4.Spring OscillatorCO350405.Bar PendulumCO250406.p-n junction diodeCO340507.Parallel Plate capacitorCO350408.Photo-electric cellCO540509.Numerical Aperture of an optical fiber.CO5504010.He-Ne/diode laserCO5603011.Solar cell (virtual experiment)CO5603012.p-n junction diode (virtual experiment)CO5603013.Photo electric effect (virtual lab experiment)CO56030	2.	Screw gauge	C01	60	30	10
5.Bar PendulumCO250406.p-n junction diodeCO340507.Parallel Plate capacitorCO350408.Photo-electric cellCO540509.Numerical Aperture of an optical fiber.CO5504010.He-Ne/diode laserCO5603011.Solar cell (virtual experiment)CO4603012.p-n junction diode (virtual experiment)CO5603013.Photo electric effect (virtual lab experiment)CO56030	3.	Spherometer	C01	60	30	10
Image: constraint of the second sec	4.	Spring Oscillator	CO3	50	40	10
7.Parallel Plate capacitorCO350408.Photo-electric cellCO540509.Numerical Aperture of an optical fiber.CO5504010.He-Ne/diode laserCO5603011.Solar cell (virtual experiment)CO4603012.p-n junction diode (virtual experiment)CO5603013.Photo electric effect (virtual lab experiment)CO56030	5.	Bar Pendulum	CO2	50	40	10
8.Photo-electric cellCO540509.Numerical Aperture of an optical fiber.CO5504010.He-Ne/diode laserCO5603011.Solar cell (virtual experiment)CO4603012.p-n junction diode (virtual experiment)CO5603013.Photo electric effect (virtual lab experiment)CO56030	6.	p-n junction diode	CO3	40	50	10
9.Numerical Aperture of an optical fiber.CO5504010.He-Ne/diode laserCO5603011.Solar cell (virtual experiment)CO4603012.p-n junction diode (virtual experiment)CO5603013.Photo electric effect (virtual lab experiment)CO56030	7.	Parallel Plate capacitor	CO3	50	40	10
10.He-Ne/diode laserCO5603011.Solar cell (virtual experiment)CO4603012.p-n junction diode (virtual experiment)CO5603013.Photo electric effect (virtual lab experiment)CO56030	8.	Photo-electric cell	CO5	40	50	10
11.Solar cell (virtual experiment)CO4603012.p-n junction diode (virtual experiment)CO5603013.Photo electric effect (virtual lab experiment)CO56030	9.	Numerical Aperture of an optical fiber.	CO5	50	40	10
12.p-n junction diode (virtual experiment)CO5603013.Photo electric effect (virtual lab experiment)CO56030	10.	He-Ne/diode laser	CO5	60	30	10
13. Photo electric effect (virtual lab experiment) CO5 60 30	11.	Solar cell (virtual experiment)	CO4	60	30	10
	12.	p-n junction diode (virtual experiment)	CO5	60	30	10
14.Emission Spectra of Hydrogen (virtual lab experiment)CO56030	13.	Photo electric effect (virtual lab experiment)	CO5	60	30	10
	14.	Emission Spectra of Hydrogen (virtual lab experiment)	CO5	60	30	10
15.Electromagnetic induction (virtual lab experiment)CO56030	15.	Electromagnetic induction (virtual lab experiment)	CO5	60	30	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc. Q)

List of Major Laboratory Equipment, Tools and Software:

S. Name of Equipment, Broad Relevant **Tools and Software Specifications** No. Experiment/Prac tical Number Vernier-Caliper Range: 0-15 cm, Resolution 0.01 cm. 1 1. 2. Micrometer screw gauge Range 0-25 mm, Resolution 0.01 mm 2,9 3. Spherometer Vertical scale range -10mm to 10 mm, Graduation resolution 0.01 3 mm 4. Spring oscillator 4 A spring, a measuring ruler, mass hanger and variable masses (50 gms, 100 gms). 5. Bar pendulum, meter scale a knife-edge with a platform, sprit 5 **Bar Pendulum** level, precision stop watches 6. A diode, batteries, connecting wires, multimeter/ ammeter p-n junction diode 6 voltmeter 7. Parallel Plate capacitor 7 Parallel plate capacitor arrangement, ruler scale, DC voltmeter 8. Photo-electric cell Photo cell mounted in the metal box, Lamp holder with 60W bulb, 8 analog meters (500µA & 1000mV), wooden bench fitted with scale and connecting wires 9. Laser Diode (2- 3 mW,632mm) Objective(10X), Optical fiber (1-Numerical Aperture of 9 an optical fiber. meter-long), detector with BNC connector Auto arranging Multimeter, Screen with circular graduations, one circular base with linear and circular motion and optical bench 10. He-Ne/diode laser He-Ne Laser (output 0.5 -5.0mW, wavelength 632.8 nm power 10 supply 240V, 50Hz) Or diode laser (2-3 mW,632mm), Transmission grating 15000 lines/inch, photo detector with BNC connector and holder, screen with clamp type holder, knife edge with micrometer movement, digital multimeter, scale with mount 11. Solar cell (virtual https://vlab.amrita.edu/?sub=1&brch=195&sim=360&cnt=1 11 experiment) 12. p-n junction diode https://amrita.olabs.edu.in/?sub=1&brch=6&sim=233&cnt=2 12 (virtual experiment) 13. Photo electric effect https://vlab.amrita.edu/?sub=1&brch=195&sim=840&cnt=1 13 (virtual lab experiment) 14. **Emission Spectra of** https://vlab.amrita.edu/?sub=1&brch=195&sim=359&cnt=1 14 Hydrogen (virtual lab experiment) Electromagnetic https://cdac.olabs.edu.in/?sub=74&brch=9&sim=242&cnt=1 15. 15 induction (virtual lab experiment)

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Concept of physics-1	H.C. Verma	Bharti Bhawan Publications, 2021 ISBN: 8177091875, 978-8177091878
2.	Concept of physics-2	H.C. Verma	Bharti Bhawan Publications, 2021 ISBN: 8177092324, 978-8177092325

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
3.	Text Book of Physics for Class XI (Part-I, Part-II)	N.C.E.R.T., Delhi	N.C.E.R.T., Delhi, 2019 ISBN: 81-7450-508-3(Part-I) & ISBN: 81- 7450-566-0 (Part-II)
4.	Text Book of Physics for Class XII (Part-I, Part-II)	N.C.E.R.T., Delhi	N.C.E.R.T., Delhi, 2019 ISBN: 81-7450-631-4 (Part-I) & ISBN: 81- 7450-671-3 (Part II)
5.	Engineering Physics	P. V. Naik	Pearson Education Ltd., 1993 ISBN: 817758362X,978-8177583625
6.	Applied Physics-I	Dr. Mina Talati & Vinod Kumar Yadav	Khanna Book Publishing (2021) ISBN : 978-93-91505-43-1
7.	Applied Physics-II	Dr. Hussain Jeevakhan	Khanna Book Publishing (2021) ISBN: 978-93-91505-57-8
8.	Engineering Physics	D. K. Bhattacharya & Poonam Tandon	Oxford University Press, ISBN: 0199452814, 978-0199452811
9.	The Surya Siddhanta	Aryabhatta	Baptist Mission press , Calcutta

(b) Online Educational Resources:

- 1. https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype
- 2. www.nanowerk.com
- 3. https://www.open2study.com/courses/basic-physics-150315/
- 4. https://nptel.ac.in/courses/122107035
- 5. https://nptel.ac.in/courses/122104016
- 6. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
- 7. https://www.physicsclassroom.com/
- 8. https://phys.org/
- 9. https://vlab.amrita.edu/?sub=1
- 10. https://www.olabs.edu.in/?pg=topMenu&id=40
- 11. https://www.khanacademy.org/science/physics
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Fundamentals of Physics, David Halliday, Robert Resnick and Jearl Walker
- 2. Engineering Physics, R.K. Gaur and S. L. Gupta
- 3. University Physics with Modern Physics, Sears and Zemansky
- Physics for Scientists and Engineers with Modern Physics by Raymond A. Serway and John W. Jewett
- 5. Physics Laboratory Manual, David H Loyd

Diplo	ma in Electrical Engineering	Semester - I	SBTE, Bihar
A)	Course Code	: 2420104(T2420104/P2420104/S2420104)	
B)	Course Title	: Basic Electrical Engineering	
C)	Pre- requisite Course(s)	: Applied Physics- C	
D)	Rationale	:	

Rationale D)

> Technologists in electrical engineering are expected to handle electrical machines, instruments, devices, and equipment. Besides this, operations about power systems, protection scheme, and controls must be studied and developed understanding on these aspects by the students. The main aim of this course is to understand the basic concepts, rules, and laws of electric and magnetic circuits and to apply these in solving basic problems of electrical engineering. The understanding of basic electrical engineering concepts in this course will also help to students for understanding other higher-level courses related to Electrical Engineering Discipline.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- CO-1 Apply basic concepts of electricity to determine value of resistors in a given electrical circuit.
- CO-2 Measure Capacitance and Inductance of the given circuit.
- CO-3 Apply fundamental Laws and concepts of DC and AC circuits to solve simple electrical problems in a given electrical system.
- CO-4 Apply the principles of magnetic circuit to solve simple electrical problems in a given electrical Equipment.
- CO-5 Apply the principles of electromagnetism to solve simple electrical problems in a given electrical Equipment.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	1	2	2	-	2		
CO-2	3	2	1	2	-	-	2		
CO-3	3	3	1	2	3	-	2		
CO-4	3	3	1	2	-	2	2		
CO-5	3	3	3	3	2	-	2		

Legend: High (3), Medium (2), Low (1), and No mapping (-)

PSOs will be developed by respective programs coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

		Scheme of Study (Hours/Week)							
Course Code	Course Title			Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2420104	Basic Electrical Engineering	03	-	04	02	09	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	cheme (Mar	·ks)		
		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2420104	Basic Electrical Engineering	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2420104

Maj	or Theory Session Outcomes (TSOs)	Units	Relevant
			COs
TSO 1a. TSO 1b. TSO 1c. TSO 1d. TSO 1e. TSO 1f. TSO 1g.	Explain the concept of AC and DC currents. Identify practical and Ideal current sources. Explain the concept of DC and AC Voltage. Distinguish practical and Ideal voltage sources. Calculate equivalent resistance of the given electric circuit. Explain the given effect of the electric current with a relevant application. Calculate work, power, and energy for the given circuit.	 Unit-1.0 Basic Concepts of Electrical Engineering 1.1 Electrical Charge and flow of Charges 1.2 Current (D.C/A.C): Concept of Ideal & Practical current sources 1.3 Voltage (D.C /A.C): Concept of E.M.F. Potential difference Terminal voltage. Concept of Ideal & Practical voltage sources 1.4 Resistor. Properties. Classification of resistors Practical application of resistors. Commonly used resistance material. Effect of temperature on resistance. Series and parallel combination of resistances 1.5 Heating Effect, Magnetic effect, Chemical effect of electric current. 1.6 Electrical work, power and Energy 	Number (s) CO1
	Explain the concept of Capacitance.	Unit-2.0 Energy Storing Elements	CO1, CO2
150 20.	Calculate energy stored in the given capacitor.	Capacitors	
TSO 2c.	Deduce Voltage and Current equation of a Capacitor.	2.1 Capacitance formation, Expression for capacitance	
TSO 2d.	Calculate equivalent capacitance in the given series and parallel capacitive circuit.	2.2 Capacitive reactance.2.3 Energy stored in a Capacitor.	
TSO 2e.	Explain effect of the given dielectric media on capacitance.	2.4 Voltage and Current equation for capacitor.	
TSO 2f.	Describe the process of charging and discharging of capacitor.	2.5 Series & Parallel combination of capacitors.	
TSO 2g.	Explain the behavior of a Capacitor in the given circuit.	2.6 Effect of dielectric media on capacitance.	
TSO 2h.	State the criteria for the Selection of type of the capacitors for the given applications.	 Electric field strength Electric flux density. Permittivity. 2.7 Charging and discharging of capacitors. 	

Major Theory Session Outcomes (TSOs)	Units	Relevant
		COs
TCO 2: Evaluin Colf 9, mutual laduatence and	2.0 Initial and Final Conditions in a consultan	Number (s)
TSO 2i. Explain Self & mutual Inductance and	2.8 Initial and Final Conditions in a capacitor-	
Inductive reactance.	rise of current and voltage (No derivation,	
TSO 2j. Explain the behavior of inductor to AC and	numerical only)	
DC sources.	2.9 Leading power factor behavior of a	
TSO 2k. Calculate energy stored in the given	capacitor	
inductor.	2.10 A.C./D.C. capacitors and Applications.	
TSO 2I. Deduce voltage and current equation of	Inductors	
an Inductor.	2.11 Self and mutual inductance, Inductive	
TSO 2m. Explain the behavior of current and	Reactance	
voltage in an inductor.	2.12 Behavior of inductor to AC and DC sources	
TSO 2n. Describe the process for Selection of the	2.13 Energy stored in an inductor.	
Inductors for the given applications.	2.14 Voltage and current equations of	
	inductor.	
	2.15 Initial and final conditions in an Inductor -	
	rise of current and voltage (No derivation,	
	numerical only).	
	2.16 Inductor types and their applications.	
TSO 3a. Apply Ohm's law to calculate internal	Unit-3.0 Basics of D.C & A.C Circuits	CO2, CO3
resistance of the given circuit.		
TSO 3b. Identify the given circuit elements.	D.C Circuits;	
TSO 3c. Apply concept of node, branch, loop,	3.1 Ohm's Law	
mesh in the given circuit.	3.2 Internal resistance of source3.3 Internal voltage drops, Terminal voltage.	
TSO 3d. Apply Kirchhoff's laws to determine	3.3 Internal voltage drops, Terminal voltage.3.4 Active & Passive elements.	
current and voltage in the given circuit.	3.5 Linear & Non-linear circuit.	
TSO 3e. Explain various quantities related to A.C.	3.6 Unilateral and Bilateral circuit element.	
TSO 3f. Calculate RMS and Average value of the	3.7 Node, Branch, Loop, Mesh	
given waveform.	3.8 Kirchhoff's Current Law (KCL).	
TSO 3g. Represent given A.C quantities in	3.9 Kirchhoff's Voltage law (KVL).	
rectangular and polar form.		
TSO 3h. Draw phasor diagram for series R-L and R-	A.C Circuits	
C circuit.	3.10 Frequency, Time period, Amplitude,	
TSO 3i. Determine Voltage and Current in a	Angular Velocity, RMS Value, Average	
simple series R-L and R-C circuit.	Value, Form factor, Peak factor, power	
	factor.	
	3.11 Representation of AC quantities in rectangular and polar form and	
	conversion.	
	3.12 Phasor representation of alternating	
	quantities.	
	3.13 Phasor representation of sinusoidal	
	quantities.	
	3.14 Voltage and current response in R-L and	
	R-C circuit.	
TSO 4a. Define the given terms related to a	Unit-4.0 Magnetic Circuits	CO3, CO 4
magnetic circuit.		
TSO 4b. Calculate various parameters of the given	4.1 Terms related to magnetic circuit;	
magnetic circuit.	Magnetic flux	
TSO 4c. Interpret B-H curve and Hysteresis loop of	 Magnetic flux Magnetomotive force 	
the given magnetic material.	 Magnetionfolive force Magnetic field strength 	
TSO 4d. Compare the characteristics of the given	 Permeability 	
electric and magnetic circuit.	 Reluctance. 	
_	 Magnetic leakage, leakage coefficient 	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
	 (Simple numerical on above) 4.2 Magnetic circuits; Uniform magnetic circuits. Series & parallel circuits 4.3 Magnetic Hysteresis, Hysteresis loop. 4.4 Magnetization (B-H) Curve and its Applications. 4.5 Comparison of Electric and Magnetic circuits 	
 TSO 5a. Explain the phenomenon of production of induced e.m.f and current in the given equipment. TSO 5b. Differentiate between statically and dynamically induced emf. TSO 5c. Apply principles of Faraday's law to calculate induced e.m.f in the given circuit. TSO 5d. Apply principles of the given Laws and rules in the given magnetic circuit. TSO 5e. Calculate self-inductance and mutual inductance in the given magnetic circuit. TSO 5f. Identify the given types of coupling. 	 Unit-5.0 Electromagnetism 5.1 Electromagnetic induction, Induced e.m.f and current. 5.2 Statically and dynamically induced emf. 5.3 Farady's Laws of Electromagnetic Induction. 5.4 Lenz's Law, Fleming's R.H. rule; direction of induced E.M.F, Fleming's L.H. rule, Ampere's Law. 5.5 Self and mutual inductances. 5.6 Co-efficient of mutual inductance (M), Co-efficient of coupling. 5.7 Interaction between two or more magnetic field. 	CO4, CO5

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420104

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. Identify the Resistor Component available in the Laboratory.	1.	Identification of Resistor	CO1
LSO 1.2. Plot the terminal voltage of a source starting from no load to different load (Current) conditions.	2.	Effect of different load conditions on terminal voltage of a source	CO1
LSO 1.3. Measure current and voltage in a branch of the given electric circuit	3.	Measurement of current and voltage in a branch of the given electric circuit	CO1
LSO 1.4 Connect resistors in series and parallel combination on bread board and measure resistance using digital multimeter.	4.	Measurement of resistances in series and combination in an electric circuit	CO1
LSO 1.5 Calculate the value of color-coded resistor and verify it by measuring the value of resistor using digital multimeter	5.	Value of color-coded resistor	CO1
LSO 2.1 Calculate the value of equivalent Inductance in series and parallel combination and verify by measuring the value of capacitance using suitable meter (Digital Multimeter/LCR Meter).	6.	Measurement of the value of Inductor in series and parallel combination in a circuit	CO1, CO2

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 2.2 Calculate the value of equivalent capacitance in series and parallel combination and verify it by measuring the value of capacitance using suitable meter (Digital Multimeter/LCR Meter).	7.	Measurement of the value of capacitor in series and parallel combination in a circuit	CO1, CO2
LSO 2.3 Verify the Phase difference (Lag)between current and voltage waveform for an inductor connected to an AC source with respect to time (using CRO).	8.	Phase difference(lag) between voltage and current waveform in a given inductor	CO1, CO2
LSO 3.1 Calculate voltage across each element in a given circuit applying principles of ohm's law.	9.	Voltage across each element in a given linear circuit	CO2, CO3
LSO 3.2 Determine currents in a given electric circuit using KCL and verify it by conducting experiment.	10.	Measurement of current in the given electric circuit.	CO2, CO3
LSO 3.3 Determine voltages in a given electric circuit using KVL and verify it by conducting experiment	11.	Measurement of voltage in a given electric circuit	CO2, CO3
LSO 3.4 Verify the Phase difference(lead) between current and voltage waveform for a capacitor connected to an AC source with respect to time (using CRO).	12.	Phase difference(lead) between voltage and current waveform in a given capacitor.	CO2, CO3
LSO 4.1 Demonstrate self and mutual inductance using experimental set up available in the Laboratory.	13.	Demonstration of self and mutual inductance.	CO2, CO4
LSO 4.2 Plot BH curve of a magnetic material	14.	BH curve of a magnetic material	CO4
LSO 4.3 Demonstrate statically and dynamically induced emf.	15.	Demonstration of statically and dynamically induced emf.	CO4
LSO 5.1 Demonstrate Faraday's laws of electromagnetism	16.	Demonstration of Faraday's laws of electromagnetism.	CO4, CO5
LSO 5.2 Demonstrate Flemings right hand and left-hand rules	17.	Demonstration of Flemings right hand and left- hand rules.	CO4, CO5
LSO 5.3 Demonstrate Lenz's law	18.	Demonstration of Lenz's law.	CO5

- L) Suggested Term Work and Self Learning: S2420104 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - 1. Prepare a report on types of resistors, their power ratings and relevant applications.
 - 2. Take a sample resistor component and calculate resistance value based on color codes and verify its value using multimeter and submit report on it.
 - 3. Prepare a chart showing range of resistances used for electrical insulating materials.
 - 4. Sketch a plot of BH curve for soft and hard magnetic materials respectively.
 - 5. Collect the information regarding various types of inductors used in different domestic appliances.
 - 6. Prepare a chart of different types of capacitors used with their applications.
 - 7. Prepare a chart illustrating an example to differentiate between useful and leakage flux.

b. Micro Projects:

- 1. Prepare a report on comparison of a physical system (containing two vertical water columns connected with a horizontal capillary tube and liquid flow due to gravity) to demonstrate the analogy of charge, potential difference and current flow in electrical system.
- 2. Prepare a report on working of resistor, Inductor and Capacitor and demonstrate the same through role play or using animation.
- 3. Prepare detailed specifications of capacitor units used for power factor improvement in an industry.
- 4. Prepare a chart for commonly used capacitors used in different domestic appliances (name of appliances with type and ratings).
- 5. Connect and test the capacitor and choke circuit in a light/lamp for its proper working and submit report on it.
- 6. Connect three choke and 40-watt lamp in series with a switch across a single-phase AC supply. Analyze the effect of switching action and prepare report on variation of voltage and current with respect to time.
- 7. Search animations demonstrating Faraday's laws of electromagnetic induction and Lenz's law to understand the concepts of electromagnetic induction and develop a presentation.

c. Other Activities:

- 1. Seminar Topics:
 - Types of resistors, Inductors and capacitors and their applications.
 - Basic laws governing DC and AC circuits.
 - Applications based on principle of electromagnetic induction.
- 2. Surveys:
 - Carry out a market survey for availability of different types of resistors used for small projects and submit report on it.
 - Survey a market for availability of different types of semiconductor diodes used for small projects and submit report on it.
- 3. Visit:
- Visit institute laboratory/workshop and prepare report about the various electrical sources available along with their specifications.
- Visit to a nearby electrical substation and observe the capacitors installed and submit report on it.

d. Self-Learning Topics:

- Industrial/commercial applications of AC and DC supply
- Difference between AC and DC in terms of generation, waveforms, and power
- Applications of conducting, insulating, magnetic material used in electrical system.
- Applications of statically and dynamically induced emf
- Different types of CROs available in the market
- Different types of Multimeter available in the market

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assessment (LA) [#]				
Progressive End Theory Theory Assessment Assessment (ETA) COs (PTA)				0	Progressive Lab Assessment	End Laboratory Assessment				
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
CO-1	15%	15%	10%	-	20%	20%	20%			
CO-2	20%	20%	25%	25%	25%	15%	20%			
CO-3	25%	25%	25%	25%	20%	25%	20%			
CO-4	25%	25%	25%	25%	25%	25%	20%			
CO-5	15%	15%	15% 25% 10%		10%	15%	20%			
Total	30	70	20 20 10			20	30			
Marks			U	50		1				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	otal ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0 Basic Concepts of Electrical Engineering	6	CO1	10	3	3	4	
Unit-2.0 Energy Storing Elements	8	CO1, CO2	14	4	4	6	
Unit-3.0 Basics of D.C & A.C Circuits	14	CO2, CO3	18	5	5	8	
Unit-4.0 Magnetic Circuits	12	CO3, CO4	17	5	5	7	
Unit-5.0 Electromagnetism	8	CO4, CO5	11	3	4	4	
Total Marks	48	-	70	20	21	29	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant	PLA/ELA			
S.	Laboratory Practical Titles	COs	Performance		Viva-	
No.		Number(s)	PRA	PDA	Voce	
		Number (3)	(%)	(%)	(%)	
1.	Identification of Resistor	CO1	50	40	10	
2.	Effect of different load conditions on terminal voltage of a source	CO1	60	30	10	
3.	Measurement of current and voltage in a branch of the given electric circuit	C01	60	30	10	
4.	Measurement of resistances in series and combination in an electric circuit	C01	65	25	10	
5.	Value of color-coded resistor	CO1	50	40	10	
6.	leasurement of the value of Inductor in series and parallel CO1 40 50 pmbination in a circuit					
7.	Measurement of the value of capacitor in series and parallel combination in a circuit	CO2	40	50	10	
8.	Phase difference(lag) between voltage and current waveform in a given inductor	CO2	60	30	10	
9.	Voltage across each element in a given linear circuit	CO3	30	60	10	
10.	Measurement of current in the given electric circuit.	CO3	45	45	10	
11.	Measurement of voltage in a given electric circuit	CO3	45	45	10	
12.	Phase difference(lead) between voltage and current waveform in a given capacitor.	CO3	50	40	10	
13.	Demonstration of self and mutual inductance.	CO4	60	30	10	
14.	BH curve of a magnetic material	CO4	50	40	10	
15.	Demonstration of statically and dynamically induced emf.	CO4	50	40	10	
16.	Demonstration of Faraday's laws of electromagnetism.	CO5	50	40	10	
17.	Demonstration of Flemings right hand and left-hand rules.	C05	50	40	10	
18.	Demonstration of Lenz's law.	CO5	50	40	10	

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number		
1.	DC Source (Variable)	0-20/50 Volts	1-18		
2.	AC Source (Variable)	0-300 Volts	1-18		
3.	Voltmeter	0-300 V, 0-75 V (MI & MC)	1-18		
4.	Ammeter	0-5/10/20 A (MI), 0-2 A (MC)	1-18		
5.	Rheostats	0-50 Ohms, 5 Amp; 0-300 Ohms, 2 amp			
6.	Resistors, Capacitors, and Inductors	Appropriate ratings and different types	1, 6		
7.	Demonstration kit for demonstrating statically and dynamically induced emf	Lab experiment purpose	15		
8.	Demonstration kit to demonstrate self and mutual inductance.	Lab experiment purpose	13		
9.	Demonstration kit for Faraday's laws of electromagnetic induction.	Lab experiment purpose	16		
10.	Demonstration kit for Flemings right hand and left hand rules.	Lab experiment purpose	17		
11.	Demonstration kit for Lenz's law.	Lab experiment purpose	18		
12.	Multimeter	Digital Multimeter: 3 1/2 digit display, 9999 counts digital multimeter measures: V _{ac} , V _{dc} (1000V max), A _{dc} , A _{ac} (10 amp max), Resistance: (0 - 100 M∧), Capacitance and Temperature measurement	5,7,18		
13.	CRO dual trace	25 MHz,230 V AC, 50 Hz	4,12,18		

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	A textbook of Electrical Engg. Vol-1	Theraja, B. L. Theraja, A.K.	S. Chand and Co. New Delhi 2014 ISBN:9788:21924405
2.	Basic Electrical Engg.	Mittle, V. N.	TATA McGraw Hill, New Delhi ISBN: 978-0-07-0088572-5
3.	Electrical Technology	Hughes, Edward	Pearson Education, New Delhi ISBN-13: 978-0582405196
4.	Fundamentals of Electrical Engineering	Saxena, S. B. Lal	Cambridge University Press, New Delhi ISBN:9781107464353
5.	Basic Electrical & Electronics Engineering	Jegathesan, V	Wiley India, New Delhi ISBN: 97881236529513

(b) Online Educational Resources:

- 1. https://onlinecourses.nptel.ac.in/noc20_ee64/preview
- 2. https://archive.nptel.ac.in/courses/108/108/108108076/
- 3. https://nptel.ac.in/courses/122106025
- 4. https://de-iitr.vlabs.ac.in/List%20of%20experiments.html

(c) Others:

- 1. Learning Packages on basic Electrical Engineering
- 2. Users' Guide
- 3. Manufacturers' Manual on Electrical Components
- 4. Lab Manuals on Basic Electrical Engineering

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

Diploma in Electrical Engineering		Semester - I	SBTE, Bihar		
A)	Course Code	: 2415105(P2415105/S2415105)			
B)	Course Title	: Engineering Drawing & Graphics			
		(CE, EE, ELX, ELX (R), MIE, FTS, AE, CHE, TE, CRE)			
C)	Pre- requisite Course(s)	: Knowledge of standard geometries			
D)	Rationale	:			

Rationale D)

With the emergence of computer-aided drafting and design (CAD) tools the traditional engineering drawing practices has undergone significant change as the emphasis has shifted from drawing board-based engineering practices to Computer aided based drafting and modeling which has the advantages of speed, modification, storage and convenience of drawing complex 2D and 3D entities. Still to develop ability of visualization, understanding of drawing standards and free hand sketching on one side and to take advantage of digital drafting tools on other, this course addresses both the aspects. The course covers the knowledge & application of drawing instruments, familiarizes the learner about Bureau of Indian standards related to engineering drawing, developing the ability to draw and read various engineering curves, projections and dimensioning styles and finally make him able to use computer aided drafting software for developing engineering drawings related to different fields.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- CO-1 Use drawing instruments, drawing codes, dimensioning, conventions and symbols as per IS SP-46(2003) in engineering drawing.
- CO-2 Draw geometrical figures, curves and engineering scales.
- CO-3 Draw the views of objects using principles of orthographic projection.
- CO-4 Draw isometric views of components directly or from orthographic projections.
- CO-5 Draw free hand sketches of engineering elements, their orthographic and isometric views.
- CO-6 Use computer aided drafting software to draw 2D and isometric geometric entities.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes* (PSOs)	
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/Deve lopment of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	-	-	3	2	1	-		
CO-2	3	-	-	3	-	1	-		
CO-3	3	1	1	3	-	1	2		
CO-4	3	1	1	3	-	1	2		
CO-5	3	-	1	3	-	-	2		
CO-6	3	-	1	3	2	1	3		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

		Scheme of Study (Hours/Week)					
Course Code	Course Title	Instru	lassroom Lab Instruction Instruction (CI) (LI)		Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	т				
2415105	Engineering Drawing and Graphics	-	-	04	02	06	03

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits= (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

H) Assessment Scheme:

			As	sessment So	cheme (Mar	ks)		
		Theory Assessment (TA)		Self-Le Asses	Work& earning sment VA)	Lab Assessi	ment (LA)	+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2415105	Engineering Drawing and Graphics	-	-	20	30	20	30	100

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units:

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs
			Number(s)
TSO 1b. TSO 1c. TSO 1d. TSO 1e. TSO 1f.	Use Drawing Instruments to prepare 2D drawings manually. Use different lines and annotations for a given situation. Draw engineering scale for the given situation. Choose appropriate scale factor for the drawing as per given situation. Dimension the given geometric figure using IS SP-46 standard. Draw the given regular geometric figure with tangents and normal. Draw selected engineering curve.	 Unit-1.0 Basic Elements of Drawing 1.1 Methods to use different Drawing Instruments and supporting materials. 1.2 Different lines and conventions in engineering drawing. 1.3 Engineering scales and applications: Reduced, enlarged & full size (only Plain scale) 1.4 Dimensioning techniques: types and applications of chain, parallel and coordinate dimensioning as per SP-46. 1.5 Regular Geometrical figures, Tangency constructions. 1.6 Engineering Curves: only Ellipse and Parabola using concentric circle method, rectangular method and Eccentricity method when focus and directrix are given. 	C01, C02
TSO 2b.	Explain the different types of projections & their uses. Draw the orthographic projections of different objects Convert pictorial views into orthographic views	 Unit-2.0 Orthographic Projections 2.1 Concept and applications of Orthographic, Perspective, Isometric and Oblique Projections. 2.2 Orthographic Projection: First and Third angle 2.3 Draw orthographic views of simple 3D entities containing lines, circles and arcs with axis/orientation parallel and/or perpendicular to the projection planes only. Problems should be restricted up to three views Front view/Elevation, Top view/Plan and Side views only using First Angle Method only. 2.4 Conversion of simple pictorial views into orthographic views. (Domain specific illustrative problems to be given by the teacher) 	CO1, CO2, CO3
TSO 3b. TSO 3c.	Explain the Isometric Projection, Isometric view and Isometric Scale. Draw isometric dimensioning on the given isometric view. Explain the Methods of constructing isometric drawing Draw Isometric View of the given object containing elements like rectangular,	 Unit-3.0 Isometric Projection 3.1 Introduction to isometric projection. 3.2 Isometric scale and Natural Scale. 3.3 Isometric view and isometric projection. 3.4 Illustrative problems limited to Isometric projection of objects containing rectangular, circular, cylindrical shapes and slots on sloping and plane surfaces. 	CO1, CO3, CO4

Major Theory Session Outcomes (TSOs)			Units	Relevant COs Number(s
ГSO Зе.	circular, cylindrical shapes and slots on sloping and plane surfaces. Convert the given orthographic views into isometric View/Projection.	3.5	Conversion of orthographic views into isometric View/projection.	
rSO 4a.	Sketch the given straight line, square, rectangle, circle and arc.	Unit	t-4.0 Free Hand Sketches of Engineering Elements	CO5
rsO 4b.	Sketch the given simple orthographic and	4.1	Materials for Sketching.	
rc0 4a	isometric views of the given part.	4.2	General Guidelines for Freehand Sketching.	
<i>30 4c</i> .	Sketch the given domain specific engineering element/component.	4.3	Freehand sketching of straight lines, square, rectangle, circles and arcs.	
		4.4	Free hand sketches of orthographic views.	
		4.5	Free hand sketches of isometric views.	
		4.6	Freehand sketching of domain specific engineering elements/components (e.g. Bolt, Nut, Washer, Stud, Screw, simple machine parts, etc. in case of mechanical, production, automobile, electrical engineering).	
rSO 5a.	Use computer aided drafting software for	Unit	t-5.0 Basic Computer aided Drafting	CO1, CO2
rSO 5b.	creating the institute Drawing Template. Use computer aided drafting software for creating the given simple 2D entity.	5.1	Basics of AutoCAD or any other drafting software–interface, screen layout, starting commands from menus, command line.	CO6
		5.2	Coordinate system, Angular measurements, Point specification.	
		5.3	Drawing aids - Grid, Snap, Ortho, Osnap, Units, Limits, Layers, Linetype.	
		5.4	Opening and Saving drawing files.	
		5.5	Creating User Defined Templates.	
		5.6	Methods of Selecting and deleting Objects.	
		5.7	Undo and Redo.	
		5.8	Creating basic drawings objects - lines, arc, circles, ellipses, polyline and polygons.	
rSO 6a.	Use computer aided drafting software for	Unit	t-6.0 Advanced Computer aided Drafting	CO1, CO2
	creating orthographic views of the given object.	6.1	Modify commands - erase, copy, move, rotate, scale, stretch,	CO3, CO4 CO6
30 00.	Use computer aided drafting software for creating isometric views of the given object.	6.2	Array: concept and applications.	
TSO 6c.	Print the given drawing (using institute	6.3	Controlling Drawing display	
	template) on A4/A3 sheet.	6.4	Text and Dimensioning	
		6.5	Layers: concept and application	
		6.6	Drawing orthographic vies using drafting software with principles mentioned in Unit 2.	
			Drawing isometric views using drafting	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2415105

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. LSO 1.2.	Use manual drawing instruments Draw simple 2D entities using manually drawing instruments.	1.	 Geometric Construction: Draw set of lines with different conditions (two problems). Draw circle and arcs with different geometric conditions and constraints (two problems). Draw polygons by general methods (Triangle, square, pentagon, hexagon, heptagon) (Three problems). 	CO1, CO2
LSO 2.1. LSO 2.2.	Draw conic sections using manually drawing instruments. Use different methods of construction of ellipse and parabola.	2.	 Construct ellipse using four center method, arc of circle method and rectangle method. Construct parabola using rectangular method, and parallelogram method. 	CO2
LSO 3.1. LSO 3.2.	Apply concepts of orthographic projection in drawing the given simple object on drawing sheet. Visualize the three views related to the given object based on its shape and orientation.	3.	 Draw Orthographic projections of following using first angle method: A pentagonal pyramid is placed in first quadrant with its axis parallel to H.P. and V.P A frustum of a hexagonal is placed in first quadrant with its axis perpendicular to H.P. and parallel to V.P Different objects having cylindrical surfaces, ribs. (three views of each object, total six problems) 	CO3
LSO 4.1.	Apply concepts of orthographic projection to draw three views of given domain specific object/ component.	4.	Draw Orthographic projections of domain specific objects (three views of each object) (Two problems).	CO3
LSO 5.1.	Use concepts of Isometric projection to draw the given simple object with slant surface.	5.	Draw Isometric view of simple objects having plain and slanting surface by using natural scale. (Three problems)	CO4
LSO 6.1. LSO 6.2.	Visualize the 3D shape of the given object. Convert the given 2D figures/views into 3Dobject.	6.	Convert the orthographic views of an object to isometric view. (Two problems)	CO3, CO4
LSO 7.1.	Draw free hand sketches of the given domain specific object/component	7.	Draw free hand sketches/conventional representation of your domain specific components (Six problems)	CO5
LSO 8.1.	Draw 3D free hand sketches from the given isometric shape.	8.	Draw free hand sketch of isometric drawings (prepared in Sr. No. 05) without using any instruments.	CO5
LSO 9.1.	Draw 3D free hand sketches of the given real object/component.	9.	Given the 3D model of an object, student will try to imagine the three views and draw them with free hand in the sketch book.	CO5
LSO 10.1.	Use computer aided drafting software to create and modify a template.	10.	Prepare a template for your institute of A-4 size with title block and institute logo.	CO6
LSO 10.2.	Insert any picture in the existing AutoCAD drawing			

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 10.3. Insert text in the existing AutoCAD drawing			
LSO 11.1. Use computer aided drafting software to create and modify simple 2D entities.	11.	Computer Aided Drafting: Use the software to draw following simple 2-D entities using Draw commands individually	CO6
LSO 11.2. Use computer aided drafting software to create and modify circles and arcs with different geometric conditions and constraints		 Draw circle and arcs with different geometric conditions and constraints (two problems). Draw polygons (Triangle, square, pentagon, hexagon, heptagon) (Three problems). 	
LSO 12.1. Use computer aided drafting software to calculate Area, Perimeter, and Centroid of the given 2D entity	12.	Use the software to estimate Area, Perimeter, and Centroid for the given 2D entities like Circle, Pentagon, Trapezium, hexagon and 2D entity with arcs and spline curves using 'Enquiry' and 'List' commands.	CO6
LSO 13.1. Use computer aided drafting software to draw complex 2D entities.	13.	Use the software to draw four domain specific complex 2-D entities assigned by the teacher using Draw, Edit and Modify commands	CO6
 LSO 14.1. Use computer aided drafting software to create and modify 2D entities. LSO 14.2. Use computer aided drafting software to create and modify the given orthographic views. 	14.	 Use the software to draw orthographic views of A pentagonal pyramid is placed in first quadrant with its axis parallel to H.P. and V.P A frustum of a hexagonal is placed in first quadrant with its axis perpendicular to H.P. and parallel to V.P Different objects having cylindrical surfaces, ribs. (three views of each object, total six problems) 	CO3, CO6
LSO 15.1. Use computer aided drafting software to create and modify the given isometric entities.	15.	Use the software to draw isometric views of three 3D objects containing lines, arcs, circles, holes, ribs and slots	CO4, CO6

L) Suggested Term Work and Self Learning: S2415105 Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments:

- 1. Sketch progressive and parallel dimensioning.
- 2. Prepare a list of industrial and household components in which conic curves are used and justify the utility of these curves.
- 3. Write the equations for parabola in different quadrants and observe the effect of changing eccentricity in case of parabola.
- 4. Exercises on drawing orthographic views of engineering domain specific simple parts.
- 5. Exercise on drawing isometric views of different objects.
- 6. Exercises on converting the orthographic views of an object to isometric view.
- 7. Exercise on missing views.
- 8. Exercises on creating simple digital drawings, orthographic views and isometric views.

- 9. Each student should explain at least one problem for construction and method of drawing in sheet/computer to all batch colleagues. Teacher will assign the problem of particular sheet to be explained to each student batch.
- 10.Each student will assess at least one sheet of other students (May be a group of 5-6 students identified by teacher can be taken) and will note down the mistakes committed by them. Student will also guide the students for correcting the mistakes, if any.

b. Micro Projects:

- 1. Through experimentation, justify that the eccentricity of an ellipse is 1.
- 2. Cut a Cardboard/Thermocole cone with various section planes to get circle, ellipse, parabola and hyperbola.
- 3. Explore the applications of engineering curves in different fields of engineering and prepare a short report.
- 4. List the shapes and curves you are observing around you in real life with name of place and item. (For Ex. ellipse, parabola, hyperbola, cycloid, epicycloids, hypocycloid, involute, spiral helix).
- 5. Cut triangular, square, rectangular and circular shaped Cardboard/Thermocole pieces and observe them by placing in different positions with respect to the protection planes.
- 6. Take a medium sized hexagonal nut and draw its isometric projection.
- 7. The teacher will assign one set of orthographic projections and ask the student to develop 3D Thermocol models of the same.
- 8. Prepare an A4 digital drawing template of your institute with title block and institute logo.
- 9. Each batch will collect 5 components/circuits/items specific to their branch and draw their orthographic views using AutoCAD software.
- 10.Download 5 videos on shortcuts used in AutoCAD, watch them and write a report to detail out the steps involved, Commands used.

c. Other Activities:

- 1. Seminar Topics:
 - Standard symbol and conventions used in engineering drawings related to your branch/domain.
 - Commercially available other Computer Aided Drafting Software.
 - Compatibility of AutoCAD drawings compared to Conventional Drawing.
- 2. Visits: Collect production/construction/circuit drawings from nearby industries/shop/builders and observe the type of orthographic projection, symbol of projection and various views used.
- 3. Self-Learning Topics:
 - Types of lines and dimensioning in engineering drawing.
 - Different methods of drawing Arcs and Circles in AutoCAD software.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix		
	Theory Asses	sment (TA)**	Term We	ork Assessn	nent (TWA)	Lab Assessment (LA) [#]	
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work& Self Learning Assessment Assignments Micro Other Projects Activities*			Progressive Lab Assessment	End Laboratory Assessment
	Class/Mid Sem Test					(PLA)	(ELA)
CO-1	-	-	05%	-	-	05%	16%
CO-2	-	-	05%	20%	20%	05%	16%
CO-3	-	-	20%	20%	20%	15%	16%
CO-4	-	-	20%	20%	20%	15%	16%
CO-5	-	-	15%	20%	20%	20%	16%
CO-6	-	-	35% 20% 20%		40%	20%	
Total	-	-	20 20 10			20	30
Marks				50			

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: (Not Applicable)

O) Suggested AssessmentTable for Laboratory (Practical):

		Delevent	F	PLA/ELA	
S.	Laboratory Practical Titles	Relevant COs	Perfor	mance	Viva-
No.	No. Laboratory Practical Titles		PRA* (%)	PDA** (%)	Voce (%)
1.	 Geometric Construction: Draw set of lines with different conditions (two problems). Draw circle and arcs with different geometric conditions and constraints (two problems). Draw polygons by general methods (Triangle, square, pentagon, hexagon, heptagon) (Three problems). 	CO1, CO2	30	60	10
2.	 Construct ellipse using four center method, arc of circle method and rectangle method Construct parabola using rectangular method, and parallelogram method 	CO2	30	60	10
3.	 Draw Orthographic projections of following using first angle method: A pentagonal pyramid is placed in first quadrant with its axis parallel to H.P. and V.P A frustum of a hexagonal is placed in third quadrant with its axis parallel to H.P. and V.P Different objects having cylindrical surfaces, ribs. (three views of each object, total six problems) 	CO3	30	60	10

		Relevant	F	PLA/ELA	
S.	Laboratory Practical Titles	COs	Perfor		Viva-
No.		Number(s)	PRA* (%)	PDA** (%)	Voce (%)
4.	Draw Orthographic projections of domain specific objects (three views of each object) (Two problems).	CO3	30	60	10
5.	Draw Isometric view of simple objects having plain and slanting surface by using natural scale. (Three problems)	CO4	30	60	10
6.	Convert the orthographic views of an object to isometric view (Two problems)	CO3, CO4	30	60	10
7.	Draw free hand sketches/conventional representation of your domain specific components (Six problems)	CO5	30	60	10
8.	Draw free hand sketch of all above isometric drawings (prepared in Sr. No. 06) without using any instruments.	CO5	30	60	10
9.	Given the 3D model of an object, student will try to imagine the three views and draw them with free hand in the sketch book.	CO5	40	50	10
10.	Prepare a template for your institute of A-4 size with title block and institute logo.	CO6	40	50	10
11.	 Computer Aided Drafting: Use the software to draw following simple 2-D entities using Draw commands individually Draw circle and arcs with different geometric conditions and constraints (two problems). Draw polygons (Triangle, square, pentagon, hexagon, heptagon) (Three problems). 	CO6	40	50	10
12.	Use the software to estimate Area, Perimeter, and Centroid for the given 2D entities like Circle, Pentagon, Trapezium, hexagon and 2D entity with arcs and spline curves using 'Enquiry' and 'List' commands.	CO6	40	50	10
13.	Use the software to draw four domain specific complex 2-D entities assigned by the teacher using Draw, Edit and Modify commands	CO6	40	50	10
14.	 Use the software to draw orthographic views of A pentagonal pyramid is placed in first quadrant with its axis parallel to H.P. and V.P A frustum of a hexagonal is placed in first quadrant with its axis perpendicular to H.P. and parallel to V.P Different objects having cylindrical surfaces, ribs. (three views of each object, total six problems) 	CO3, CO6	40	50	10
15.	Use the software to draw isometric views of three 3D objects containing lines, arcs, circles, holes, ribs and slots	CO4, CO6	40	50	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

S. Broad Name of Equipment, Relevant No. **Tools and Software** Specifications **Experiment/Practical** Number 1. Drawing Table with Drawing Table with Drawing Board of Full Imperial/ A1 size. 1 to 9 **Drawing Board** Models and Charts Normal and cut sectioned Models and Charts of objects for 2. 1 to 9 orthographic / isometric projections Drawing equipments and instruments for class room teaching-Drawing 3. equipments 1 to 9 and instruments large size: • T-square or drafter (Drafting Machine). • Set squires (450 and 300-600) • Protector. • Drawing instrument box (containing set of compasses and dividers). • Drawing sheets, Drawing pencils, Eraser. • Drawing pins / clips From nearby industries, construction companies and All 4. Sample production/construction developed by senior teachers of the state drawings 5. Interactive board Supports dual touch, dual write and intuitive gestures, such as All (165 x 130 cm) toss, rotate and zoom with multitouch operating systems, such as Windows® 6. Computer aided Latest educational licensed network version 9 to 15 drafting software like AutoCAD 7. CAD workstations latest configuration 9 to 15 Processor Intel Core i7 with Open GL Graphics Card, RAM 32 GB, DDR3/DDR4, HDD 500 GB, Graphics Card NVIDIA OpenGL 4 GB, OS Windows 10 Printer/plotter 8. A3 size 9 to 15

Q) List of Major Laboratory Equipment, Tools and Software:

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Engineering Drawing	N.D. Bhatt	Charotar Publishing House, Anand, Gujrat 2010; ISBN: 978-93- 80358-17-8.
2.	Engineering Drawing	R.K. Dhawan	S. Chand and Company, New Delhi; ISBN: 81-219-1431-0.
3.	Engineering Drawing	P.J. Shah	S. Chand & Company, New Delhi, 2008, ISBN:81-219-2964-4.
4.	Engineering Graphics with AutoCAD	A.K. Sarkar, A.P. Rastogi, D.M. Kulkarni	PHI Learning, Private Limited-New Delhi (2010); ISBN: 978-8120337831.
5.	Engineering Drawing and Graphics using AutoCAD	T. Jeyapoovan	Vikas Publishing House Pvt. Ltd, Noida, 2011; ISBN: 978-8125953005.
6.	Engineering Graphics	S. K. Pradhan K.K. Jain	Khanna Book Publishing Company Pvt. Ltd., New Delhi, ASIN : B0BM5BMMXT ISBN-10 : 9355381891 ISBN-13 : 978-9355381897

Online Educational Resources:

(b)

1. Scales: https://youtu.be/YSEZu3Ch26k 2. Dimensioning: https://youtu.be/_OSY04TnIEM 3. Simple Orthographic Projections: https://youtu.be/DW7dpKdxVrA 4. Orthographic Projections of objects with slant and curved surfaces: https://youtu.be/dCWjBvZBpjM 5. Illustrative Example: https://youtu.be/MR5de9EC940 6. Illustrative Example: https://youtu.be/mahh-WONNHA 7. Isometric Projection of 3D objects: https://youtu.be/0K-5URiyi50 8. Isometric Projection-Object with slant surfaces: https://youtu.be/qSPJOiXKv98 9. Isometric Projection-Object with curved surfaces: https://youtu.be/qSPJOiXKv98 Missing lines and missing views: https://nptel.ac.in/courses/105/104/105104148/ 10. 11. Launching AutoCAD and Opening drawing: https://youtu.be/aoo-t0-gEfw AutoCAD Main Screen: https://youtu.be/D0YyEiCjwpk 12. Draw and Modify Toolbars: https://youtu.be/T_RN_RBFk7o 13. https://youtu.be/ Bheo9MzeVk 14. Illustrative Example-1: 15. Block creation: https://youtu.be/ZguZZVjxaek 16. **Rectangular and Polar array :** https://youtu.be/YgYZgbrUJ M 17. Illustrative Example-2: Array: https://youtu.be/yJf_IsWX4gM 18. **Dimensioning:** https://youtu.be/sEiRsi14u0U 19. Use of layers: https://youtu.be/fdQqNdDtOI8 https://youtu.be/AU-Vsd2T0DA 20. Illustrative Example 3: Flywheel:

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- Bureau of Indian Standards, Engineering Drawing Practice for Schools and Colleges IS: SP-46, BIS, Government of India, Third Reprint, October 1998; ISBN: 81-7061-091-2.
- 2. AutoCAD e manual

D) Rationale

Information technology is a term that describes the entire range of information generation, storage, transmission, retrieval, and processing. Most organizations in the industry, business, non-profit organizations, and government departments now rely heavily on their information systems (IS) and information technology (IT). Thus, student must possess basic skills to use Information technology and Information systems.

Looking to the current IT practices in business it is also necessary for student to learn basic programming skills that includes building logic, develop algorithms and then write programs. The 'C' has been widely used as a general-purpose language to develop basic and advanced applications,

Hence this course is designed keeping in view the development of a basic understanding of programming skills in students with the help of the 'C' programing language. The course is designed to create a base to develop foundation skills in IT and programming languages.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- CO-1 Appraise computer systems and its applications for various educational, business, and industrial domain.
- CO-2 Setup a small computer Network.
- Write 'C' Program to solve given arithmetic expression CO-3
- CO-4 Develop 'C' program Using control structure
- CO-5 Develop 'C' programs using arrays.
- CO-6 Create functions in C programs for modular programming approach.

F) Suggested Course Articulation Matrix:

Course		Programme Outcomes (POs)								
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	Analysis	PO-3 Design/Developmen t of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	
CO-1	1	-	-	-	1	2	2			
CO-2	1	1	1	2	-	-	1			
CO-3	1	2	1	1	-	-	-			
CO-4	1	3	2	1	-	-	-			
CO-5	1	3	2	1	-	-	-			
CO-6	1	2	2	1	-	-	-			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course Code	Course Title	Instru	room uction CI)	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т				
2418105	Fundamentals of IT and C	03	-	04	02	09	06
	Programming	00			52		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

H) Assessment Scheme:

			Asses	sment Schei	me (Marks)			
		Theory Assess	ment(TA)	Self-Le Asses	Work & earning sment VA)	Lab Asse (L		(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2418105	Fundamentals of IT and C Programming	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

Major Theory Session Outcomes Relevant Units (TSOs) COs Number(s) TSO 1a. Describe the anatomy of the CO-1 **Unit-1.0 Basics of Computer System** Computer System. 1.1 Computer System and its Components. TSO 1b. List the different Input and Generation of Computer Output devices. Anatomy of Computer Systems TSO 1c. Identify the different types of Input and output device memory in computer systems. Motherboard TSO 1d. Explain communication process Peripherals between different components Backend and Front end of System Unit 1.2. Storage device in Computer System of a computer. Primary Storage TSO 1e. Describe the functionalities of a Secondary Storage computer system. 1.3. CPU Components TSO 1f. Use Internet digital Platforms Register **Control Unit** ALU 1.4. Types of Bus Address Bus Data Bus Control Bus 1.5 Search Engine Introduction Search Query Applications of Internet Digital Platforms (BHIM, Digi-Locker, m-paravian, NPTEL etc.) CO-2 TSO 2a. Compare various computer **Unit 2.0 Basic Network Concepts** network topologies 2.1 Network Topologies TSO 2b. Differentiate types of networks. Bus, Mesh, Star, Ring, Hybrid TSO 2c. Compare internet and intranet 2.2 Types of Computer Networks TSO 2d. Explain IP addressing system. LAN. WAN TSO 2e. Explain functions of Networking 2.4 Internet & Intranet Devices. IP Addressing system and URL, Internet, Intranet, Comparison between Intranet & Internet 2.3 DNS Introduction, Need Domain Names & its types 2.5 Networking Devices (Types and use) Switch, Router, Gateway, Modem, Repeater, Wireless Access Point, NIC TSO 3a. Write Algorithm to solve the Unit 3.0 Basics of 'C' Programming and control structures CO-3 given problem. 3.1 Fundamentals of algorithms: Notion of an algorithm. TSO 3b. Write simple 'C' program to Pseudo-code conventions like assignment statements and solve the given arithmetic basic control structures. expressions

J) Theory Session Outcomes (TSOs) and Units: T2418105

	Electrical Engineering	Semester - I	SBIE, Binar		
Majo	r Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)		
TSO 3c.	Write a simple 'C' Program demonstrating the given data type conversion	 3.2 Flowchart: Flowchart, Symbols of flowchart, Guidelines for preparing Flowchart 3.3 Introduction to C: 			
TSO 3d.	Write I/O Statements for the given data.	General Structure of a 'C' program Data Concepts: Character set, tokens, keywords, Identifiers, Variables, Constant, data types, C operators,			
TSO 3e.	Write a 'C' program using a decision-making structure for two-way branching to solve the given problem.	 Arithmetic operators, Arithmetic expression, declaring variables, and data type conversion. 3.4 Basic Input output: Input and Output statements, using printf() and scanf(), character input/output statements, 			
TSO 3f.	Write a 'C' program using a decision-making structure for multi-way branching to solve the given problem.	 Input/output formatting, Use of comments 3.5 Decision making and branching: Relational and logical operators, if statement, if else statement, nested if-else, if-else ladder' The switch statement 3.6 Looping: While loop, Do While loop For loop, Go to 			
TSO 3g.	Apply loop statements to solve the given iterative problem in 'C' program.	statement, Use of break and continue statements			
TSO 3h.	Use appropriate statements to change the program flow in the given loop.				
TSO 4a.	Write statements to read, write the given array.	Unit 4.0 Array and Pointer	CO-4		
TSO 4b.	Manipulate the given array of characters and numbers.	4.1 Characteristics of an array, One dimension and two- dimension arrays, Array declaration and Initialization			
TSO 4c.	Use pointers to access memory locations for solving the given	4.2 Array of characters, Operation on array Character and String input/output			
	problem.	Concepts of pointers: declaring, initializing, accessing.			
TSO 5a.	Use the given Library function.	Unit 5.0 Concept and Need of Functions	CO-5		
TSO 5b.	Develop user defined functions for the given problem.	Library functions: Math functions, String handling functions,			
TSO 5c.	Write 'C' codes to pass the given function parameters using "call by value" and "call by reference" approach.	other miscellaneous functions. Writing User defined functions, scope of variables. Parameter passing: call by value, call by reference. Recursive functions			
TSO 5d.	Write recursive function for the given problem.				

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2418105

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
 LSO 1.1. install device driver. LSO 1.2. Install given software on your system. LSO 1.3. Perform Registration process of digital India platform. LSO 2.1. List various types of networking devices in your Institute. 	2.	 1.1 Identify specifications of various types of computer systems available in your institute. 1.2 Install Printer, scanner driver. 1.3 Install any two freeware or open- source software/tool by using web browser 1.4 Use Digital India Platforms: BHIM, Dig- Locker, m-parivahan, NPTEL. 2.1 Connect two/three computers to form a network using wire/wireless 	CO-1 CO-2
 LSO 2.2. make a small local area network. LSO 3.1. Write and execute simple 'C' program. LSO 3.2. Use scanf() and printf() functions in 'C' programs. LSO 3.3. Write C Program using Decision Making and two-way branching statements. LSO 3.4. Write C Program using "switch-case" statement for multi-way branching. LSO 3.5. Use the "if" and "Switch" statements appropriately for decision making in C Program. LSO 3.6. Write and execute C programs using various types of loop statements to solve iterative problems. 	3.	 connectivity and configure it. 3.1 Write 3 different C –Program to demonstrate use of Arithmetic expression, constant, variable and Increment/ decrement operators. 3.2 Write a program to- a. Determine whether a given year is a leap year or not. b. Determine whether a string is palindrome. c. Find the greatest of the three numbers using conditional operators. d. Find if a given character is vowel (use if-else ladder). 3.3 Using switch statement-Write program to: Print day of week by taking number from 1 to 7. 3.4 Write Program to: a. Find sum of digits of a given number. b. Find Fibonacci series for given number. c. Write a program to produce the following output: 	CO-3, CO-4
 LSO 4.1. Write and execute C programs using one- dimension array. LSO 4.2. Write and execute C program using two- dimensional array. 	4	4.1 Develop a Program to:a. Sort list of 10 numbers.b. Perform addition of 3x3 matrix.	CO-5
LSO 5.1. Write C program using different types of library functions to solve given problem. LSO 5.2. Write C program to Create and use user defined functions	5.	 5.1 Develop Program to demonstrate: a. Use of String handling functions. b. Use of Mathematical functions. c. Use of other miscellaneous functions. 5.2 Develop a Program to: a. Create a function to find GCD of given number. Call this function in a program. 	CO-6

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
		5.3 Find Factorial of given number using recursion.	

- L) Suggested Term Work and Self Learning: S2418105 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Identify specifications of various types of computer systems in your Institute .
- 2. Prepare a report on computer peripherals and its usage of your computer lab.
- 3. Prepare a presentation on network topology.
- 4. Prepare a survey report to identify various types of networking devices available in your Institute.
- 5. Make a calculator using 'C' programming.

c. Other Activities:

- 1. Seminar Topics: -
 - "Future of IT"
 - "Scope of 'C' programming in other Engineering disciplines"
- 2. Prepare a poster presentation on Computer hardware and peripherals.
- 3. Prepare a report on Open Source software available for Electronics Engineering.
- 4. Product Development: Development of projects for real life problem solution using 'C' programming.
- d.
- e. Self-Learning Topics:
- 1. System and application software.
- 2. Scope of 'C' programming in real world.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term W	ork Assessm	ent (TWA)	Lab Assessment (LA) [#]				
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term \	Work & Self Assessmen	0	Progressive Lab Assessment	End Laboratory Assessment			
	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)			
CO-1	10%	10%	10%			10%	-			
CO-2	10%	10%	10%			10%	-			
CO-3	10%	10%	15%	100%	100%	25%	30%			
CO-4	25%	25%	25%					25%	40%	
CO-5	25%	25%	20%			15%	30%			
CO-6	20%	20%	20%	20%		15%				
Total	30	70	20 20 10		20	30				
Marks			L	50		1				

- Legend:
- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom	COs	Marks	Remember	Understanding	Application
	Instruction	Number(s)		(R)	(U)	& above
	(CI)					(A)
	Hours					
Unit-1.0 Basics of Information System	5	CO-1	7	3	3	1
Unit 2.0 Basic Network Concepts	5	CO-2	7	3	2	2
Unit 3.0 Basics of 'C' Programming and	18	CO-3 and CO-4	28	8	8	12
Control Structures Unit 4.0 Array and Pointer	12	CO-5	17	3	4	10
Unit 5.0 Concept and need of functions	8	CO-6	11	3	2	6
Total	48	-	70	20	19	31

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent		PLA/ELA	
S.	Laboratory Practical Titles	Relevant COs	Perfo	Viva-	
No.		Number(s)	PRA*	PDA**	Voce
1.	Identify specifications of various types of computer systems available in your institute.	CO-1	(%) 40	(%) 50	(%) 10
2.	Install Printer driver.	CO-1	40	50	10
3.	Install any two freeware or open-source software/tool by using web browser	CO-1	40	50	10
4.	Use Digital India Platforms: BHIM, Dig-Locker, m-parivahan, NPTEL.	CO-1	30	60	10
5.	Connect two/three computers to form a network using wire/wireless connectivity and configure it.	CO-2	40	50	10
6.	Write 3 different C – Program to demonstrate Arithmetic expression, constant, variable and Increment/decrement operator.	CO-3	50	40	10
7.	 Write a program to- a. Determine whether a given year is a leap year or not. b. Determine whether a string is palindrome. c. Find the greatest of the three numbers using conditional operators. d. Find if a given character is a vowel (use if-else ladder). 	CO-3	50	40	10

		Delevent		PLA/ELA	
S.		Relevant COs	Perfor	mance	Viva-
No.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
8.	Write program to: Print day of week by taking number from 1 to 7.	CO-3	50	40	10
9.	 Write Program to: (a) Find sum of digits of a given number. (b) Find Fibonacci series for given number. (c) Write a program to produce the following output: 1 2 3 4 5 6 7 8 9 10 	CO-3	50	40	10
10.	Develop a Program to: a. Sort list of 10 numbers. b. Perform addition of 3x3 matrix.	CO-4	50	40	10
11.	 Develop Program to demonstrate: a. Use of all String handling functions. b. Use of few Mathematical functions. c. Use of few other miscellaneous functions. 	CO-5	50	40	10
12.	Develop a Program to: a. Create a function to find GCD of given number. Call this function in a program	CO-5	50	40	10
13.	Find Factorial of given number using recursion.	CO-5	50	40	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. Name of Equipment,		Broad	Relevant		
No.	Tools and Software	Specifications (No Generic)	Experiment/Practical		
		Give basic configuration or Latest	Number		
1	Computer System	Any General-purpose Computer	All		
5	Switch	4, 8, 12, 16 or 24 port switches with 100/1000 gbps data transfer speed	5		
6	Ethernet cable	Cat 6, cat6e or above	5		
8	Printer	Any printer dot matrix, inkjet or laser printer	2		

S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications (No Generic)	Experiment/Practical
		Give basic configuration or Latest	Number
9	C complier	Turbo C/ Dev C/Others	6-13

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No. 1	Computer fundamentals and programming in C	Reema thareja	Oxford university press INDIA ISBN-10 : 9780199463732 ISBN-13 : 978-0199463732
2	Let us C	Yashavant Kanetkar	BPB publication, ISBN-10 : 8183331637 ISBN-13 : 978-8183331630
3	Programming in ANSI C	E. Balagurusamy	McGraw Hill education ISBN-10 : 935316513X ISBN-13 : 978-9351343202
4	Computer Fundamentals Concepts Systems and Applications 8th Edition (English, Paperback,	Priti Sinha, Pradeep Sinha	BPB Publications ISBN-13: 9788176567527 ISBN-10: 8176567523
5	Fundamentals of Computers	E Balagurusamy	McGraw Hill Education 2009, ISBN-10 : 9780070141605 ISBN-13 : 978-0070141605

(b) Open Educational Resources:

- 1. https://nptel.ac.in/courses/106104128
- 2. https://en.wikipedia.org/wiki/Networking_hardware
- 3. https://www.javatpoint.com/computer-fundamentals-tutorial
- 4. https://www.w3schools.com/c/

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Header files
- 2. Lab Manuals

- A) Course Code : 2420105(P2420105/S2420105)
- B) Course Title : Electrical & Electronics Workshop (EE, ELX, CSE, AIML)

:

- C) Pre- requisite Course(s)
- D) Rationale:

Electrical and Electronics Workshop is a basic practical engineering course which provides basic knowledge of workshop safety, measuring instruments, hand tools, equipment and machinery used in various shops like wood working shops, welding shop, electrical and electronics materials and components. Students will develop practical skills by performing a variety of operations in various shops using relevant mechanical, electrical and electronic materials as well as appropriate hand tools, equipment, tools and machinery. The knowledge, skills and attitude developed during the course enable the students to undertake industrial and field work related tasks. This course provides industrial environment in educational institutions.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course out comes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Use measuring devices and hand tools effectively.
- **CO-2** Undertake wood working operations economically and safely.
- **CO-3** Perform various joining operations using welding, brazing and soldering methods.
- **CO-4** Identify basic electrical and electronics components.
- **CO-5** Use firefighting equipment and other safety related accessories.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes (POs)								Programme Specific Outcomes* (PSOs)	
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Devel opment of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Lifelong Learning	PSO-1	PSO-2	
CO-1	3	2	2	3	1	-	2			
CO-2	3	2	2	3	2	-	2			
CO-3	3	2	2	3	1	-	1			
CO-4	3	1	1	3	1	-	1			
CO-5	3	3	2	1	2	1	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

			Scheme of Study (Hours/Week)						
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
	Electrical &								
2420105	Electronics Workshop		-	04	02	06	03		

Legend:

CI: Classroom instruction (Includes different instructional/implementation strategies i.e.Lecture(L), Tutorial(T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other location using different instructional/Implementations strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits= (1xClhours) + (0.5xLlhours) + (0.5xNotionalhours)

Note:TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment S	cheme (Mar	ks)			
		Theory Ass	sessment	Term Work&		Lab Assessment			
		(TA	N)	Self-Le	earning	(L	A)		
					sment			٦ آ	
				(T\	NA)		1	∆+L	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)	
	Electrical &								
2420105	Electronics	-	-	20	30	20	30	100	
	Workshop								

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work &Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

Term Work is to be done by the students under the guidance of internal faculty, but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: (Not Applicable)

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420105

Pra	actical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.2. LSO 1.3.	List various measuring tools and instruments. Use suitable measuring unit and its conversion. Select suitable measuring devices in a given situation. Measure the given job using suitable instruments.	1.	 1.1 Identify different types of measuring tools available in workshop. 1.2 Use suitable Marking and hand tools in a given situation. 1.3 Measure the given job using suitable measuring Devices. 	CO-1
LSO 2.2 LSO 2.3	List various wood working tools with major specifications. Select wood working tools as per given job. Perform various wood working operations as per given drawing/sketch. Follow the right procedure to prepare given type of joint.	2.	 2.1 Prepare one simple job of wood working comprises of marking, cutting, plaining and finishing as per given drawing/sketch. 2.2 Prepare switch board as per given sample. 2.3 Prepare simple wooden joint as per given sketch / drawing. 	CO-2
LSO 3.2 LSO 3.3	Choose appropriate joining method in a given situation Select suitable welding method as per job requirement. Carryout suitable welding procedure as per given sketch / drawing. Perform brazing operation in a given situation.	3.	 3.1 Operate gas welding apparatus to generate different types of flames. 3.2 Prepare lap joint using gas welding as per given drawing safely. 3.3 Prepare butt joint using arc welding as per given drawing safely. 3.4 Join the given sheets by using brazing. 	CO-3
LSO 4.2 LSO 4.3 LSO 4.4 LSO 4.5	Select various electrical and electronic components. Identify various given electrical tools and measuring instruments. Describe the steps to use the given type of meters. Test the given components using Multimeter. Use the suitable procedure of mounting electrical and electronic components on given PCB.	4.	 4.1 Categorize different active and passive components available in the workshop. 4.2 Identify different types of measuring instruments used for voltage, current and wattmeter. 4.3 Measure resistance of different types of resistors using Multimeter. 4.4 Identify terminals of diodes and transistors. 4.5 Measure voltage and current for single and three phase Supply using 	CO-4
LSO 4.6	Identify terminals of a given transistor using suitable measuring instrument.		multimeter and clip on meter. 4.6 Perform continuity test of given component using Multimeter.	

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
<i>LSO 4.7</i> Perform soldering operation in a given situation.		 4.7 Identify three terminals of a transistor using digital Multimeter. 4.8 Solder various resistors, capacitors and inductors and electronic components on Printed Circuit Board (PCB). 	
 LSO 5.1 Select the fire extinguisher to extinguish the given type of fire. LSO 5.2 Describe the procedure to use the given firefighting equipment. LSO 5.3 List the materials used for first Aid. LSO 5.4 Describe the ways to maintain good housekeeping in the given situation. 	5.	 5.1 Conduct mock artificial respiration and first Aid exercises to learn about safety procedures of first Aid in case of electrical hazards. 5.2 Use Fire Extinguisher to extinguish the fire in a given situation. 	CO-5

L) Suggested Term Work and Self Learning: S2420105 Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments:

- i. Select any engineering object / part / drawing and perform the measurement using suitable measuring instrument / device.
- ii. Select any (Minimum 3 finished jobs) different wood working / carpentry/welding/metal joining jobs and prepare list of materials and joints used in selected objects.
- iii. Select any two joining method and prepare their engineering field of application.
- iv. Draw symbols of various electrical components.
- v. Draw symbols of various electronic components.
- vi. List specifications of various electrical and electronic components

b. Micro Projects:

- 1. Visit nearby mechanical/electrical workshop and collect information about operation performed by identified workshop and prepare the list of tools and equipment along with specification.
- 2. Make a wooden job as per given drawing and specifications of material.
- 3. Prepare any utility job like lab stool structure by using suitable welding process with list of tools and equipment along with specification.
- 4. Visit any organization /field agency and submit a report on safety practices followed in the identified organization /field agency.

c. Other Activities:

1. Seminar Topics:

- Safety practices and use of personal safety equipment in workshops.
- Different types of digital instruments and their functions used in workshops.
- Recent developments in various machines and instruments used in workshop.

2. Visits:

- Visit any wood working shop / welding shops/electrical and electronics workshop and firefighting station and prepare a report.
- Make a detailed market survey of local dealers for procurement of workshop tools, electrical and electronics equipment /components and raw materials.

3. Self-learning topic:

- Causes and remedies of welding/soldering/ brazing defects.
- Make various small electrical/electronic equipment for household purpose.
- Repairing of defective electrical/ electronic appliances/ tools in institutes.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix			
	Theory Asses	sment (TA)**	Term W	ork Assessm	ent (TWA)	Lab Assessment (LA) [#]		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term	Work& Self Assessmer	0	Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)	
	Sem Test			Projects	Activities*			
CO-1	-	-	20%	20%	20%	20%	20%	
CO-2	-	-	20%	20%	20%	20%	20%	
CO-3	-	-	20%	20%	20%	20%	20%	
CO-4	-	-	20%	20%	20%	20%	20%	
CO-5	-	-	20%	20%	20%	20%	20%	
Total			20 20 10			20	30	
Marks				50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentage given is approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: (Not Applicable)

O) Suggested AssessmentTable for Laboratory (Practical):

		Relevant	F	PLA/ELA	
S.	Laboratory Practical Titles	COs	Perfor	mance	Viva-
No.		Number(s)	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Identify different types of measuring tools available in workshop.	CO-1	50	40	10
2.	Use suitable Marking and hand tools in a given situation.	CO-1	50	40	10
3.	Measure the given job using suitable measuring Devices.	CO-1	60	30	10
4.	Prepare one simple job of wood working comprises of marking,	CO-2	60	30	10
	cutting, plaining and finishing as per given drawing/sketch.				
5.	Prepare switch board as per given sample.	CO-2	30	60	10
6.	Prepare simple wooden joint as per given sketch / drawing.	CO-2	50	40	10
7.	Operate gas welding apparatus to generate different types of flames.	CO-3	60	30	10

		Relevant	F	PLA/ELA	
S.	Laboratory Practical Titles	COs	Perfor		Viva-
No.		Number(s)	PRA*	PDA**	Voce
			(%)	(%)	(%)
8.	Prepare lap joint using gas welding as per given drawing safely.	CO-3	40	50	10
9.	Prepare butt joint using arc welding as per given drawing safely.	CO-3	40	50	10
10.	Join the given sheets by using brazing.	CO-3	50	40	10
11.	Categorize different active and passive components available in the workshop.	CO-4	50	40	10
12.	Identify different type of meters used for voltage, current and wattmeter.	CO-4	60	30	10
13.	Measure resistance of different types of resistors using Multimeter.	CO-4	60	30	10
14.	Identify terminals of diodes and transistors.	CO-4	60	30	10
15.	Measure voltage and current for single and three phase Supply using multimeter and clip on meter.	CO-4	40	50	10
16.	Perform continuity test of given component using Multimeter.	CO-4	60	30	10
17.	Identify three terminals of a transistor using digital Multimeter.	CO-4	50	40	10
18.	Solder various resistors, capacitors and inductors and electronic components on Printed Circuit Board (PCB).	CO-4	30	60	10
19.	Conduct mock artificial respiration and first Aid exercises to learn about safety procedures of first Aid in case of electrical hazards.	CO-5	70	20	10
20.	Use Fire Extinguisher to extinguish the fire in a given situation.	CO-5	50	40	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Measuring tools	Calipers inside and outside, micrometer, protractor, ruler, try square, scriber, laser level, depth gauge, measuring tape, Ammeter, voltmeter, multimeter, tachometer, rheostat	1,2,3
2.	Wood working tools	Marking and measuring tools, saw, claw hammer, mallet, chisels, planers, squares	4,5.
3.	Drilling machine	Up to 15 mm drill cap with 1 HP motor 1000mm height	All
4.	vice	Carpentry vice 200 mm, bench vice 100mm, pipe vice 100 mm	1,2,3,4,5,6,7,8,9
5.	Work benches	Size 2000x1000x750 mm	All
6.	Surface plate	600x900 mm grade I	All
7.	Welding machine	20 KV, 400 A Welding current, welding cable 400 amp, with all accessories	6,7,8,9
8.	Soldering and brazing equipment	Solder. Soldering iron (35 W) soldering wick, magnifying glass, wire cutters, brazing torch, aluminum brazing rod,	9
9.	Gas welding and hand tools	Welding torch, welding tip, pressure regulator, oxygen and acetylene gas cylinder and cutting kit with cylinder and regulator, spark lighter	7,8
10.	Arc welding and hand tools	Electrode holder, cable connector, chipping hammer, earthing clamp, wire brush.	6,7,8,9
11.	Electrical and electronics tools	Wire cutter, screwdriver, insulating tape, wire stripper, pilers, cable cutters, spanner, voltage tester, torch, diode, capacitor, inductor, SCR, transistor, ICs, Led, resistor, switches, plugs, circuit brakers,	10,11,12,13,14, 15,16,17,18
12.	Fire Extinguisher	A, B, C type with capacity of 5 kg and 10 kg of CO ₂ type	All

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Workshop Practice	Bawa,H.S	McGraw Hill Education, Noida ISBN:978-0070671195
2.	Engineering Workshop Practice	A.K. Sarathe	Khanna Book Publishing Co.(P) LTD. New Delhi; 2021 edition ISBN:978-93-91505-51-6
3.	A textbook of workshop Technology.	R.S. Khurmi ,J.K.GUPTA	S.Chand and Co. New Delhi ISBN:9788121908689
4.	Fundamentals of electrical and electronics engineering	J.B. Gupta	S.K. Kataria & sons. New Delhi ISBN:978-81-85749-37-2
5.	Engineering Workshop practice on Electrical &Electronics Engineering	J. Glory Priyadarshini, Dr. K.S.S. Rani , Dr.M.P Maheswari, S. Gomathy	Notion Press Mumbai, ISBN-9781639203819

(b) Online Educational Resources:

- 1. Wooden joints: https://www.youtube.com/watch?v=-f7tTNRH_04
- 2. **Carpentry tools**: https://www.youtube.com/watch?v=ZyN9Tw9VTSo
- 3. Classification of welding joints: https://www.youtube.com/watch?v=cQEUJnMYf_U
- 4. **Gas welding**: https://www.youtube.com/watch?v=-SA4D098u-Q
- 5. Arc welding: https://youtu.be/5hRgwnejWPs
- 6. **Soldering and brazing**: https://www.youtube.com/watch?v=fnEFuzeM8cc
- 7. Electrical tools: https://www.youtube.com/watch?v=0jbFC8dvTVY
- 8. **Multimeter**: https://www.youtube.com/watch?v=VnL7-TbttGw
- 9. Galvanometer: https://www.youtube.com/watch?v=LdAb3hUDTRY
- 10. LED: https://www.youtube.com/watch?v=0T5ZkOEkrL8
- 11. Diodes: https://www.youtube.com/watch?v=Fwj_d3uO5g8
- 12. Capacitors: https://www.youtube.com/watch?v=X4EUwTwZ110
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Kents Mechanical Engineering Handbook, John Wiley and Sons, New York.
- 2. Workshop practice Handbook.
- 3. Electrical and electronics handbooks
- 4. Lab Manuals.

Diploma in Electrical Engineering		Semester - I	SBTE, Bihar
A)	Course Code	: 2400008(P2400008/S2400008)	
B)	Course Title	: Sports, Yoga and Meditation (Common fo	r all Programmes)

:

C) Pre- requisite Course(s)

D) Rationale

Sports or Physical Education, Yoga and Meditation is an integral part of a person's overall well-being and is imperative for a healthy mind and body balance. So, it is necessary that every educational institutes should lay ample emphasis on including sports, yoga and meditation as a necessary part of education, however, it depends on how it is introduced in the curriculum makes all the difference. Sports, Yoga and Meditation plays a very important role in overall Well-being for a good personality, develops value system, sense of friendliness, feeling of togetherness thereby developing team spirit and mutual cooperation. Its also plays a major role in reducing level of stress/anxiety and add to the mental toughness. Looking to the ample benefits there is need to inculcate sports, Yoga and meditation as a day to day habit and imparting education related to physical education is more critical than ever before.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Select appropriate physical activities to maintain healthy lifestyle.
- **CO-2** Apply basic principles and practices of Yoga and meditation for overall growth & development.
- CO-3 Use fitness and wellness techniques for optimal health and wellbeing
- **CO-4** Apply ancient Indian ayurvedic methods and techniques, exercises, yoga and meditation for fitness and wellness.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes		Programme Outcomes (POs)								
(COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developm entof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability	PO-6 Project Managem ent	PO-7 Life Long Learning	PSO-1	PSO-2	
	Knowledge		5010110113		and Environment					
CO-1	3	3	3	-	1	-	2			
CO-2	3	3	3	-	1	-	2			
CO-3	3	3	3	-	1	-	2			
CO-4	3	2	1	-	1	-	1			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

			Scheme of Study (Hours/Week)						
Course Code	Course Title	Classr Instru (C	ction	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
	Sports,								
2400008	Yoga and Meditation	-	-	01	01	02	01		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

H) Assessment Scheme:

				Assessmen	t Scheme (Marks)		
		-	ssessment A)	Self-Le Asses	Work & earning sment	Lab Asses (LA		(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	(AV External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+ ¹
2400008	Sports, Yoga and Meditation	-	-	10	-	06	09	25

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units:

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant
			COs
TCO 1	Tradition of the birth and a state branches of the	Heit 4.0 Counts and Englisher	Number(s)
TSO.1b TSO.1c TSO.1d TSO.1e TSO.1f TSO.1g TSO.1h TSO.1i TSO.1i	Explain ancient history and development of yoga in India Compare the ancient Indian games with the modern games. Differentiate between given terms used in sports Describe the different aspects of Mental Toughness Use Imagery Training for sports Apply motivation techniques to motivate students in sports. Use concentration techniques for playing and exercising. Manage Stress, Anxiety and Arousal during sports. Select sports and exercise for healing and developing health and mental wellness Describe the impact of parents' involvement in their children's sports activities Select sports and exercises for physically challenged as per their need.	 Unit-1.0 Sports and Exercises 1.1 Historical development of physical activities and sports in India, Indian ancient games- Kho-Kho and Kabaddi, Chariot races, riding elephants and horse, swordsmanship, wrestling, boxing, atyapatya, archery, dancing, dands baithak, malkhamb, lezim, lathi etc 1.2 Origin of traditional sports, 3rd century BCE-martial arts and archery, indoor games like Chess and Snakes & Ladders have origins in ancient India, in the form of games of Chaturanga and Gyan Chauper, 1.3 Dholavira, the world's oldest terraced arena 3000 BC 1.4 Definition of play, game, sports, exercise, psychology, sports psychology and exercise psychology, psychology and common sense. 1.5 Mental toughness- mind, Imagery, use of imagery and imagery in sports, types of imagery (visual, kinesthetic, auditory and olfactory) 1.6 Motivation in sport and goalsetting in sports 1.7 Arousal regulation – self-awareness of regulation, anxiety reduction techniques, somatic anxiety reduction, multimodal anxiety reduction, coping with stress. Arousal -inducing techniques. Arousal and anxiety measurement factors, Arousal and anxiety signs recognition 1.8 Nutrition and rehabilitation, Importance of concentration and attentional focus in sports and training, Impact of health on healing from physical athletic injuries. Impact of coach in sports, parents' involvement in their children's sports activities. 1.9 Adaptation of sports and exercises for physically challenged students in all levels. 	CO1, CO4
TSO.2a	Explain ancient history and development of	Unit-2.0 Yoga and Meditation	CO2, CO4
TSO.2b	yoga in India Identify the physiology of yoga and meditation.	2.1 Origin of yoga, History and development of yoga, Adi yogi, evidences of yoga in pre-Vedic period (2700 B.C.), Vedic Period, Pre-Classical	

-			
Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant
			COs
			Number(s)
TSO.2c	Evaluate meditation and yoga as a healing	Period, Classical Period- Patanjali's period,	
TCO 2d	modality.	Modern Period.	
TSO.2d TSO.2e	Select asanas and pranayama as per need. Describe the effect of yoga and meditation	2.2 Yoga practices and the related literature- Vedas (4), Upanishads (108), Smritis, teachings	
130.20	on ageing, stress and hypertension.	of Buddhism, Jainism, Panini, Epics (2),	
TSO.2f	Select mediation techniques as per the	Puranas (18)	
130.25	need.	2.3 Importance of Yoga & Mediation, meaning of	
TSO.2g	Explain Bandha, Mudra and Chakra	the term Yoga and Meditation, Fundamentals	
TSO.2h	-	Principles of Yoga & Fitness training, Eight	
TSO.2i	Select Yoga and Meditation for physically	Limbs of Yoga	
	challenged as per their need.	2.4 Difference between yoga asana and physical	
		exercises, Difference between yoga and	
		meditation	
		2.5 Role of Yoga and Meditation in Purificatory	
		Process, in character building, developing	
		concentration, will power and discipline	
		2.6 Types of Yoga Practices - Asanas, Pranayama, Meditation	
		2.7 Mindfulness – knowing the mind, training the	
		mind, feeling the mind	
		2.8 Different Methods of meditation, Physiology	
		of meditation, Mental, physical and emotional	
		benefits of Asanas, Pranayama, Concentration	
		and Meditation	
		2.9 Bandha, Mudra and Chakra	
		2.10 Effects of Asanas and pranayama on	
		physiology of human body	
		2.11 Importance of "Suryanamaskar	
		2.12 Adaptation of Yoga and meditations for physically challenged students in all levels.	
		2.13 Yoga Asanas Do's and Don'ts for Beginners	
TSO.3a	Explain the ancient Indian ayurvedic	Unit 3.0 Fitness and Wellness	CO3, CO4
	methods for fitness and wellness		
TSO.3b	Identify the different factors affecting the	3.1 Evolution of wellness, 3,000-1,500 BC:	
	fitness and wellness in the given situation	Ayurveda – holistic system, Tailored Ayurvedic	
TSO.3c	Use different methods to maintain Health	regimens as per unique constitution of each	
	and Wellness	person (their nutritional, exercise, social	
TSO.3d	Explain the components of Balance Diet	interaction and hygiene needs) – with the	
TSO.3e	Identify the causes of stress and anxiety in	goal of maintaining a balance that prevents	
TCO 24	the given situation	illness.	
TSO.3f	Use stress reduction techniques to manage Stress and Anxiety	3.2 Meaning, Importance, Definition and dimensions of Health and Wellness	
TSO.3g	Manage Stress, Anxiety and Depression in	(WHO/Yoga)	
	the given situation	3.3 Factors affecting Fitness and Wellness	
TSO.3h	Select recovery process for energy	3.4 Role of Physical Activities and Recreational	
	replenishment after exercise.	Games in maintaining physiological and	
		psychological wellbeing.	
		3.5 Different Methods to Maintain Health,	
		Wellness and to enhance mood	
		3.6 Nutrition for Health & Wellness, Relationship	
		between Diet and Fitness Components of	
		Balance Diet and its importance –	
		Carbohydrates, Protein, Fat, Vitamins &	
		Minerals, Water, Healthy Lifestyle through Diet and Fitness	
		3.7 Anxiety, Stress and Aging-Meaning of	
		Anxiety, Stress and Aging-Meaning of Anxiety, Stress and Aging, Types and Causes	
		of Stress,	
L		,	L

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	 3.8 Stress, anxiety and depression reduction with exercise, yoga and meditation 3.9 Energy Continuum and Recovery Process, Metabolism and exercise, Recovery from exercise, Replenishment of energy stores during recovery process, Removal of excess lactic acid produced during exercise 	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400008

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)	
activities for overall growth and developmentCycling Event to develop Flexibility etc			Track & Field: Running, Jumping, walking and Throwing, Cycling Event to develop Endurance, Speed, Strength, Agility, Flexibility etc	CO1	
LSO 1.2.	Select suitable sport activities as per your need.	2.	Aerobics and Gymnastics to develop Strength, Agility and Flexibility		
		3.	Net/Wall Sports – Volleyball and Basketball to develop Endurance, Speed, Strength, Agility and Flexibility		
		4.	Striking & Fielding sports like Cricket, bowling, Hockey, Football Baseball etc. to develop Endurance, Speed, Strength, Agility, Flexibility and Coordination		
		5.	Racket Game- Tennis, Badminton, Table tennis etc to develop Endurance, Speed, Strength, Agility and Flexibility		
		6.	Outdoor games: Kho-Kho and Kabaddi and cycling develop Endurance, Speed, Strength, Agility and Flexibility		
		7.	Indoor games: Chess and Carrom, Swimming, Boxing, Karate Weightlifting, Power Lifting, Physique Training, Archery, Roller Skating etc to develop concentration.		
		8.	Prepare and organize Adapted Sports for various levels of physically challenged and impairments.		
LSOs 2.1	Perform various yogic techniques for internal	9.	Shat Karmas: Tratakam, Jala-Neti, Sutra-Neti, Vamana Dhauti, Danda Dhauti, Agnisara, Nauli	CO2	
	purification and development.	10.	Perform following asanas with correct posture: Ardha-Padmasana [virasana], Ardha-Halasana, Pavana- Muktasana, Naukasana, Ardha-shalabhasana, Shalabhasana, Makarasan, Bhujangasana, Dhanurasana		
		11.	Perform following asnas with correct posture: Vakrasana,Chakrasana,Paschimottanasana,Ugrasana,Gomukh asana, Padmasana, Siddhasana, Bhadrasana, Swastikkasana, Vajrasana, Supta-Vajrasana, Yoga-Mudra		
		12.	MUDRAS & SURIYANAMASKAR Brahma-Mudra, Simha-Mudra, Shanmugi Mudra, Viparithakarani-Mudra, Ashwsini-Mudra, Suriyanamaskar		
		13.	BANDHAS: Jalandhara-Bandha, Jihva-Banda, Uddiyana Bandha, Moola-Bandha		
		14.	PRANAYAMAS : Nadi-Shuddhi, Nadi-Shodhana, Suryabhadana, Ujjayi, Bhastrika Pranayama, Bhramari Pranayama, Sitkari , Sitali , Kapalabhati		
		15.	MEDITATION -Silent Meditation		
150 2 1	Prepare diet chart for	16. 17.	MEDITATION – Mantra Meditation Prepare a diet chart for the given sport.	СОЗ	
130 3.1.	optimal health and wellbeing				

Practic	Practical/Lab Session Outcomes S. (LSOs) No		Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 3.2.	Use health monitoring device	18.	Measure heart rate and heart function with health monitoring device	
		19.	Measure blood sugar and blood pressure	
LSO 3.3.	Use different equipment's	20.	Use massage therapy equipment, Hot and cold therapy equipment, Ultrasound therapy equipment	
LSO 3.4.	Identify your own threshold and identification level for different taste Stimulations	21.	Determine the taste threshold for three different sensations- sweet salty and sour	
LSO 3.5.	Check the given sample for conformance to the standard for moisture content.	22.	Determine the moisture content in the given sample of oil/fat	
LSO 3.6.	Purity tests of oils/fats	23.	Determine the impurities in the given sample of oil.	
LSO 3.7.	Acidity test in given sample of fat/oil	24.	Determines the acid value and free fatty acids in the given sample of oil/fat.	
LSO 3.8.	Check whether any given samples of oils/fats conform to the standard.	25.	Determine the peroxide value in the given sample of fat or oil.	

- L) Suggested Term Work/ Activities and Self Learning: S2400008 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments:** Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. Calculate your Body Composition (BMI) and Cardiovascular Assessment
 - ii. Assessment for Muscular Endurance, Muscular Strength,
 - iii. Flexibility, Cardio-respiratory Endurance, Body Composition
 - iv. Rules and Regulations of different indoor and outdoor games.

b. Micro Projects:

- Identify and synthesize the factors that influence health in various situations (05 situations).
 Prepare a report with details of situations and solutions to remove the factors.
- ii. Visit different sports club, gyms, and schools and identify various measure taken by them for Fitness and wellness of students/ members
- iii. Visit different sports club, gyms, and schools and identify various measure taken by them for Fitness and wellness of physically challenged students/ members
- iv. Identify which type of stress, anxiety and depression students are facing and steps and solutions to overcome this.

c. Other Activities:

1. Seminar Topics:

- Identify the health-related challenges in current time and able to apply the preventive measures.
- Role of peers, community and media in health and wellbeing in each level
- Knowledge and skills required to preserve community health and well-being
- Effect of yoga and meditation in maintaining fitness.
- Methods to involve physically challenged students /members in all levels in sports, yoga and meditation in community.
- Counselling techniques to counsel players in matters of handling success and failure.

2. Visits: Visit nearby sports complex, Gyms, stadium etc and prepare a report on hygiene maintenance, medical facilities available, facilities available for physically challenged members, facilities available for old aged members, tools and equipment available and training facilities.

Semester - I

- 3. Self-Learning Topics:
 - Anatomy and physiology of human being
 - Role of Yoga and Meditation in Purificatory Process, in character building, developing concentration, will power and discipline
 - Mindfulness
 - Different Methods to Maintain Health, Wellness and to enhance mood
 - Diet and Nutrition
 - Metabolic adaptations to exercise
 - Cardio-respiratory changes
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix							
	Theory Asses	sment (TA)**	Term Work Assessment (TWA)			Lab Assessment (LA) [#]		
COs	Theory Assess	End Theory Assessment (ETA)			-	Progressive Lab Assessment	End Laboratory Assessment	
			Assignments	Micro Projects	Other Activities*	– (PLA)	(ELA)	
CO-1, CO-4	-	-	35%	35%	35%	35%	35%	
CO-2, CO-4	-	-	35%	35%	35%	35%	35%	
CO-3, CO-4	-	-	30%	30%	30%	30%	30%	
Total Marks	-	-	10	10	05	10	15	
				25		-		

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: (Not Applicable)

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant	PLA/ELA			
S. No. 1.	Laboratory Practical Titles	COs	Performance		Viva-	
		Number(s)	PRA* (%)	PDA** (%)	Voce (%)	
1.	Track & Field: Running, Jumping, walking and Throwing, Cycling Event to develop Endurance, Speed, Strength, Agility, Flexibility etc	CO1	30	60	10	
2.	Aerobics and Gymnastics to develop Strength, Agility and Flexibility		30	60	10	
3.	Net/Wall Sports – Volleyball and Basketball to develop Endurance, Speed, Strength, Agility and Flexibility		30	60	10	
4.	Striking & Fielding sports like Cricket, bowling, Hockey, Football Baseball etc. to develop Endurance, Speed, Strength, Agility, Flexibility and Coordination		30	60	10	
5.	Racket Game- Tennis, Badminton, Table tennis etc to develop Endurance, Speed, Strength, Agility and Flexibility		30	60	10	
6.	Outdoor games: Kho-Kho and Kabaddi and cycling develop Endurance, Speed, Strength, Agility and Flexibility		30	60	10	
7.	Indoor games: Chess and Carrom, Swimming, Boxing, Karate Weightlifting, Power Lifting, Physique Training, Archery, Roller Skating etc to develop concentration.		30	60	10	
8.	Prepare and organize Adapted Sports for various levels of physically challenged and impairments.		30	60	10	
9.	Shat Karmas : Tratakam, Jala-Neti, Sutra-Neti, Vamana Dhauti, Danda Dhauti, Agnisara, Nauli	CO2	40	50	10	
10.	Perform following asanas with correct posture: Ardha-Padmasana [virasana], Ardha-Halasana, Pavana- Muktasana, Naukasana, Ardha-shalabhasana, Shalabhasana, Makarasan, Bhujangasana, Dhanurasana		40	50	10	
11.	Perform following asnas with correct posture: Vakrasana,Chakrasana,Paschimottanasana,Ugrasana,Gomukhasa na, Padmasana, Siddhasana, Bhadrasana, Swastikkasana, Vajrasana, Supta-Vajrasana, Yoga-Mudra		40	50	10	
12.	MUDRAS & SURIYANAMASKAR Brahma-Mudra, Simha-Mudra, Shanmugi Mudra, Viparithakarani- Mudra, Ashwsini-Mudra, Suriyanamaskar		40	50	10	
13.	BANDHAS: Jalandhara-Bandha, Jihva-Banda, Uddiyana Bandha, Moola-Bandha		40	50	10	
14.	PRANAYAMAS Nadi-Shuddhi, Nadi-Shodhana, Suryabhadana, Ujjayi, Bhastrika Pranayama, Bhramari Pranayama, Sitkari , Sitali , Kapalabhati		40	50	10	
15.	MEDITATION -Silent Meditation		40	50	10	
16.	MEDITATION - Mantra Meditation		40	50	10	
17.	Prepare a diet chart for the given sport.	CO3	40	50	10	
18.	Measure heart rate and heart function with health monitoring device		40	50	10	
19.	Measure blood sugar and blood pressure		40	50	10	
20.	Use massage therapy equipment, Hot and cold therapy equipment, Ultrasound therapy equipment		40	50	10	
21.	Determine the taste threshold for three different sensations- sweet salty and sour		40	50	10	
22.	Determine the moisture content in the given sample of oil/fat		40	50	10	
23.	Determine the impurities in the given sample of oil.		40	50	10	
24.	Determines the acid value and free fatty acids in the given sample of oil/fat.		40	50	10	
25.	Determine the peroxide value in the given sample of fat or oil.	1	40	50	10	

Legend:

PRA*: Process Assessment PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
1.	High end computers for record keeping	Processor Intel Core i7 with Open GL Graphics Card, RAM 32 GB, DDR3/DDR4, HDD 500 GB, Graphics Card NVIDIA OpenGL 4 GB, OS Windows 10	All
2.	Aerobics and Gymnastic	Basic facilities and equipment's – Balance Beams, Gymnastic Ball, Gymnastic Chalk, Gymnastic, Clubs, Flex Floor Systems, High Bars, Hoops, Horizontal Bars, Leotards, Music, Parallel Bar, Pommel Horses, Ribbons, Rings, Ropes, Sigle Bar Trainer, Spotting Blocks, Streamers, Trampoline, Tumble Track, Uneven Bar, Vault, Vault Spring Board Gymnastic Accessories – Chalk, Grips, Wrist Supports, Mat, Tape, Socks Singlets, Pants Shoes, Shorts Aerobics- Resistance bands, Jump rope, Step bench or box, Abdominal wheel, Exercise mat, Gliding discs, dumbbells, fitness trampolines, hoops	2
3.	Striking & Fielding sports	Complete Cricket Kit, Football Kit, Bowling Kit, Hockey Kit	4
4.	Net/Wall Sports	Complete Volley Ball and basketball kit	3
5.	Racket Game	Complete Tennis Kit, Table Tennis Kit and badminton kit	5
6.	Outdoor games	Complete Kho-Kho and Kabaddi and cycling kit	6
7.	Indoor games	Complete Chess kit, Carrom kit, Swimming kit, Boxing kit, Karate kit, Weightlifting kit, Power Lifting kit, Archery kit and Roller- Skating kit	7
8.	Physique Training	Cardio Machines- Treadmills, Elliptical Trainers, Exercise Bikes, Rowing Machines, Indoor Bikes, Vibration Machines, Steppers Recumbents Dumbbells, Multi-Purpose Bench, power rack, Adjustable Dumbbell Set 2 x 3-10 kg, Exercise mat, resistance band, balance trainer	7
9.	Sports and wellbeing equipment's for physically challenged and impairments.	Fusion Wheel – all-in-one portable wheelchair gym, Pedal exerciser, Deluxe hand exerciser, Greeper sports shoelaces, Active Hands, Ramble Tag Guidance Aid, Cat Tongue Grip Tape Adaptive Cycling - Straps, Leg/ Foot Adapters, Prosthetics, Steering Dampener, Handlebar Adapters, HANDCYCLING- Wheelchairs, Bike-On Handcycles, Trikes, Racing Wheelchairs, Trikes, Recumbent Bikes, All-terrain Handcycles, Mono Cycling, Hand Bikes - Off-Road, Cross Country, Racing, Downhill Archery - Field Tripod and Quad Mounts (Archery & Gun), In-Line Draw-Loc, Mounts (Archery & Gun), Stands (Gun), Mounts (Archery & Gun) Binoculars and Rests (Gun), Crossbows (Archery),	8

S.	Name of Equipment,	Broad Specifications	Relevant
No.	Tools and Software	·	Experiment/
			Practical Number
		Wheelchair Platform Stabilizing Crutch Poles, Dampeners,	
		Crossbows (Archery), Hands free shooting rest (Gun)	
		Bowling: ramp, roll assist	
		Fitness: Anti-Gravity Treadmill, LapMat for Wheelchairs, Strike	
		Assist, Adaptive Treadmill	
10.	Yoga	Yoga Mats, Yoga Rollers, Yoga Blocks, Aero Yoga Clothing	9-16
		Blankets, cloth Straps, Bolsters, Wheels	
11.	Fitness and wellbeing	Health monitoring devices for overall healt- Personal health	18-20
	equipment's	monitor for heart health, Blood sugar monitoring device,	
		Wireless blood pressure device, Smart watch to track heart	
		function, Hot and cold therapy equipment, Massage therapy	
		equipment, Ultrasound therapy equipment	
12.	Taste kit -To test three	Salt solution (%) -0.5, 0.8, 1.0, 1.2, 1.5, Sugar solution (%) - 0.05,	21
	different sensations-	0.5, 0.7, 1.0, 1.2, Citric acid (%) - 0.02, 0.04, 0.1, 0.5, 1.0	
	sweet salty and sour	Spoons, Bowls, Beakers, Plain distilled water	
13.	Test kit to measure	Reagents: Acetic acid-chloroform solution, Saturated potassium	25
	peroxide value in the oil	iodide solution, Sodium thiosulphate solution- 0.1 N, Starch	
		solution (1%)	
		Apparatus: Pipette 1ml capacity, Conical flask	2.4
14.	Test kit to measure acid	Sample of oil/fats namely any refined oil or hydrogenated fat.	24
	value and free fatty acids	Reagents - ethyl alcohol (95%), phenolphthalein indicator	
	in the oil	solution, standard aqueous sodium or potassium hydroxide	
		solution (0.1 N or 0.5 N), Pipette (10 ml), Conical flask	22
15.	Test kit to measure	Sample of Oil/fat, Oven-electric, maintained at $100 \pm 1^{\circ}$ C.,	23
	impurities in the oil	Desiccator, Weighing balance, Filter paper	
16.	Test kit to measure	Sample of oil/fat, Moisture dish-made of porcelain, silica, glass or	22
	moisture content in the	aluminum, Oven-electric, maintained at 105 ± 1°C., Desiccator	
	oil	Weighing balance	

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Practical Applications in Sports Nutrition	Heather Hedrick Fink, Alan E. Mikesky	Jones & Bartlett Learning (2020) ISBN No: 978-1284181340
2.	Massage and Medical Gymnastics,	Lace, M. V.	London: J & A Churchill Ltd. ASIN: B000RY4YB0
3.	ACSM's Guidelines for Exercise Testing and Prescription	Gary Liguori	LWW; (2021) ISBN-13: 978-1975150198
4.	Essentials of Strength Training and Conditioning	Javair Gillett	Human Kinetics, (2021) ISBN-13: 978-1718210868
5.	Practical Applications in Sports Nutrition	Heather Hedrick Fink, Alan E. Mikesky	Jones & Bartlett Learning, (2017) ISBN-13: 978-1284101393
6.	Health Fitness Management	Mike Bates, Mike Spezzano, Guy Danhoff	Human Kinetics, (2019) ISBN-13: 978-1450412230
7.	Yoga for Every Body: A beginner's guide to the practice of yoga postures, breathing exercises and meditation	Luisa Ray, Angus Sutherland	Vital Life Books (2022) ISBN-13: 978-1739737009
8.	Science of Yoga: Understand the Anatomy and Physiology to Perfect Your Practice	Ann Swanson	DK Publisher, (2019) ISBN-13: 978-1465479358
9.	Mudras for Modern Living: 49 inspiring cards to boost your health, enhance your yoga and deepen your meditation Cards	Swami Saradananda	Watkins Publishing (2019) ISBN-13: 978-1786782786
10.	Principles and Methods of Adapted Physical Education & Recreation	Kristi Roth, Laurie Zittel, Jean Pyfer, David Auxter	Jones & Bartlett Learning, (2016) ISBN-13: 978-1284077810

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
11.	Adapted Physical Education and Sport	Joseph P. Winnick, David L.	Human Kinetics, (2016)
	Sixth Edition	Porretta	ISBN-13: 978-1492511533
12.	Counselling Skills in Applied Sport	Paul McCarthy, Zoe Moffat	Routledge, (2023)
	Psychology: Learning How to Counsel		ISBN-13: 978-1032592589
13.	Basic Counselling Skills: A Helper's Manual	Richard Nelson Jones	Sage Publication 2012, New Delhi.
14.	Advancements in Mental Skills Training	Maurizio Bertollo, Edson Filho,	Routledge, (2020)
	(ISSP Key Issues in Sport and Exercise	Peter Terry	ISBN-13: 978-0367111588
	Psychology)		
15.	The Relaxation and Stress Reduction	Martha Davis, Elizabeth	A New Harbinger Self-Help
	Workbook	Robbins, Matthew McKay,	Workbook (2019)
		Eshelman MSW	
16.	Patanjalis Yoga Sutras	Swami Vivekananda	Fingerprint Publishing (2023)
			Prakash Books India Pvt Ltd, New
			Delhi, ISBN-13: 978-9354407017

(b) Online Educational Resources:

- 1. https://onlinecourses.swayam2.ac.in/aic19_ed28/preview- introduction to Yoga and Applications of Yoga
- 2. https://onlinecourses.swayam2.ac.in/aic23_ge09/preview- Yoga for Creativity
- 3. https://onlinecourses.swayam2.ac.in/aic23_ge05/preview- Yoga for concentration
- 4. https://onlinecourses.swayam2.ac.in/aic23_ge06/preview- yoga for memory development
- 5. https://onlinecourses.nptel.ac.in/noc21_hs29/preview-Psychology of Stress, Health and Well-being
- https://onlinecourses.swayam2.ac.in/nce19_sc04/preview- Food Nutrition for Healthy Living -Course – Swayam
- 7. https://www.classcentral.com/course/swayam-fitness-management-17608- Fitness Management from Swayam
- 8. https://onlinecourses.swayam2.ac.in/nce19_sc04/preview-Food Nutrition for Healthy Living
- 9. https://onlinecourses.swayam2.ac.in/cec21_ed02/preview Health Education and Recreation
- 10. https://onlinecourses.swayam2.ac.in/cec22_ed31/preview Sports Administration and Management
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. https://www.yogajournal.com/yoga-101/philosophy/good-read
- 2. http://hdl.handle.net/123456789/38171- Yoga Philosophy
- 3. https://yoga.ayush.gov.in

A)	Course Code	: 2400009(T2400009)
B)	Course Title	: Open Educational Resources (OER) (Non-Exam Course)
		(FTS, CHE, CSE, EE, ME, ME (Auto), MIE, ELX, AIML, CRE, CACDDM, AE, CE, ELX (R), GT)
C)	Pre- requisite Course(s)	:

:

D) Rationale

Open educational resources (OER) are openly-licensed, freely available educational materials that can be modified and redistributed by users. Learning about Open Educational Resources (OER), copyright, and Creative Commons licenses is a valuable endeavor for content creators, users, and anyone interested in sharing knowledge and creative works. Creative Commons licenses, offer a standardized way to grant permissions for the use and sharing of creative works. Learning about OER, copyright, and Creative Commons licenses is an ongoing process. As these fields evolve, it's important to stay informed and continue exploring new resources and practices.

After going through this course, students will at first place have reasonable idea to explore and use various OERs useful for their course of study and secondly, be motivated for fair use of resources available to them on various platform by understanding the restrictions and legal issues related to copyright and other licensing policies.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Use Open Educational Resources (OER) after their evaluation
- **CO-2** Use copyright material appropriately.
- **CO-3** Implement suitable Creative Common License.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes(POs)							Programme Specific Outcomes* (PSOs)	
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	-	2	-	-	3	-	3		
CO-2	-	2	-	-	3	-	3		
CO-3	-	3	-	-	3	-	3		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

	Scheme of Study (Hours/Week)						
Course Title	Classroom Instruction (Cl)		Notional Hours (TW/ Activities+ SL)	Total Hours	Total Credits		
	L	Т	-	(CI+TW/ Activities)	(C)		
Open							
Educational	01	-	-	01	01		
Resources							

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

I) Theory Session Outcomes (TSOs) and Units: T2400009

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
 TSO 1a. Explain the difference between OER and other free educational materials. TSO 1b. Describe the challenges and benefits of using OER in a class. TSO 1c. Apply various aspects of evaluating OER before use TSO 1d. Explain necessity to assess an OER's adaptability. TSO 1e. Use preliminary search for open educational resource. TSO 1f. Find OER using various resources. 	 Unit-1.0 Open Educational Resources 1.1 OER - definition 1.2 What is NOT OER. 1.3 Benefits of using OER – Benefits to Students - Access to Quality Education 1.4 OER - Benefits to Faculty - Use, Improve and Share, Network and collaborate with peers, Lower Cost, Improve access to information 1.5 Challenges of Using OER – Subject Availability, Format and Material type availability, Time and Support availability 1.6 Evaluating OER – a) Clarity, Comprehensibility, and Readability, b) Content and Technical Accuracy, c) Adaptability and Modularity, d) Appropriateness and Fit, e) Accessibility 1.7 Finding Open Content - OER Search Scenario Filter by Usage Rights in Google, Repositories and Search Tools, Subject-specific Repositories 	C01

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 2a.	Explain benefits of copyright protection for creator	Unit-2.0 Copyright and Open Licensing	CO2
TSO 2b.	Explain exceptions and limitations to copyright law	2.1 Copyright and what it does protect, benefits of copyright protection for creators, duration of copyright protection last, rights granted to	
TSO 2c.	List rights granted to copyright holders.	copyright holders.	
TSO 2d.	Explain Exceptions and limitations to copyright law	2.2 Exceptions and limitations to copyright law, fair use/fair dealing apply to copyright	
TSO 2e.	Explain Fair use/fair dealing apply to copyright	2.3 Public domain and its relation to copyright.2.4 Penalties for copyright infringement	
TSO 2f.	Elaborate Public domain and how does it relate to copyright	2.5 Apply copyright to digital content and the internet	
TSO 2g.	Elaborate penalties for copyright infringement.	2.6 Use of copyrighted works in education.2.7 Open Licenses – GNU – Free Documentation	
TSO 2h.	Explain copyright for digital content and the internet.	license, Free Art License 2.8 Why Free Licenses – Retain, Reuse, Revise,	
TSO 2i.	Explain use of copyrighted works in education	Remix, Redistribute	
TSO 2j.	Explain the use of free licenses		
TSO 3a.	Describe the four different Creative Commons License components.	Unit-3.0 Creative Common Licenses	CO3
TSO 3b.	Explain the reason some CC-licensed content might not be considered OER.	3.1 Alternatives to copyright as Creative Commons licenses.	
TSO 3c.	Explain the Strength and weakness of four Open CC Licenses	3.2 Four components of creative common Licenses – Attribution, Share- Alike, Non –	
TSO 3d.	Choose the right Creative Commons license for work.	commercial, No Derivatives 3.3 Choosing a Creative common licenses – Wiley's 5 Rs and Creative Common Licenses	
TSO 3e.	Apply a Creative Commons license to existing work.	 Four Open CC Licenses and Their Strengths and Weaknesses – (a) CC BY (b) CC BY SA (c) 	
TSO 3f.	Use of Creative Commons licenses for commercial purposes.	CC BY NC (d) CC BY NC SA 3.5 Attribution Vs Citation - Creative Commons	
TSO 3g.	Modify a work licensed under Creative Commons.	 licensed work without giving attribution 3.6 Apply a CC License - choose the right Creative Commons license for work, apply a Creative 	
TSO 3h.	Revoke a Creative Commons license, combine works with different Creative Commons licenses	Commons license to existing work, Creative Commons licenses be used for commercial purposes, modify a work licensed under	
TSO 3i.	Differentiate between Attribution and Citation	Creative Commons, revoke a Creative Commons license, combine works with different Creative Commons licenses	

Note: One major TSO may require more than one Theory session/Period.

J) Suggested Term Work/ Activities and Self Learning: Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments:

Related to Open Educational Resources – CO1

- i. OER help to reduce the cost of education for students. Justify?
- ii. Explain why it is necessary to assess an OER's adaptability?
- iii. Identify four search tools for finding open educational resources?
- iv. Identify at least two search tools for finding openly licensed media?

- i. Explain copyright and what does it protect
- ii. Explain the rights granted to copyright holders
- iii. Describe the exceptions and limitations to copyright law
- iv. Elaborate the way fair use/fair dealing apply to copyright?
- v. Describe the public domain and its relationship with copyright
- vi. Elaborate the penalties for copyright infringement?
- vii. Explain copyright apply to digital content and the internet
- viii. Explain the way copyright law address the use of copyrighted works in education

Related to Creative Common Licenses – CO3

- i. Explain various Creative Commons licenses
- ii. Describe, how can you apply a Creative Commons license to your existing work?
- iii. Explain the benefits of using Creative Commons licenses?
- iv. Elaborate, how you can modify a work licensed under Creative Commons?
- v. Are Creative Commons licenses valid worldwide?
- vi. Elaborate how Creative Commons license can be revoked, once it has been applied to your work?
- vii. Explain, how anyone use a Creative Commons licensed work without giving attribution?
- viii. Explain the limitations/restrictions while using works with Creative Commons licenses?

b. Micro Projects:

- 1. Collect information on the impact of OER on cost savings and student engagement.
- 2. Search at least four OER related to topic of your Engineering Discipline over Internet. Evaluate the material based on the relevance, accuracy and usability.
- 3. Explore the different types of resources under creative Commons licenses (e.g., CC BY, CC BY-SA, CC BY-NC, etc.) and their specific permissions and restrictions.
- 4. Create a comparative analysis chart or infographic that visually represents the key characteristics of each license.
- 5. Select minimum 5 real-world examples from different domains (such as music, art, literature, or education) where creators have used Creative Commons licenses.

c. Other Activities:

- 1. Seminar Topics:
 - OER Quality Assurance
 - OER Repositories and Platforms
 - Creative Commons and Digital Media
 - Creative Commons in the Visual Arts
 - Examine the legal implications of using Creative Commons licenses, including the obligations and responsibilities of both creators and users and present it.
- 2. Self-Learning Topics:
 - Open Licensing and Copyright: Understanding the Legal Framework for OER
 - Creative Commons and the future of Copyright
 - Copyright and Open Access Publishing
 - Copyright and Software

Diploma in Electrical Engineering

K) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

L) List of Major Laboratory Equipment, Tools and Software: (If Any)

S.	Name of Equipment,	Broad
No.	Tools and Software	Specifications
1.	Computers	Desktop computer with word processing and presentation facility
2.	Internet	Internet Connectivity

M) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	The OER Starter Kit.	Abbey Elder – 2019	IA: Iowa State University Digital Press, available under a Creative Commons Attribution 4.0 International License. Retrieved from iastate.pressbooks.pub/oerstarterkit
2.	A Brief History of Open Educational Resources	Bliss, T J and Smith, M. – 2017	In: Jhangiani, R S and Biswas-Diener, R. (Eds.) Open: The Philosophy and Practices that are Revolutionizing Education and Science (pp. 9–27). London: Ubiquity Press. DOI: https://doi.org/10.5334/bbc.b.

Note: Above listed books are available in soft form and can be downloaded as given respective link

(b) Online Educational Resources:

- 1. OER for Empowering Teachers Instructional Material by P. Malliga is licensed under a Creative Commons Attribution 4.0 International License.
- 2. William & Flore Hewlett Foundation. (n.d.). OER defined. Retrieved from https://hewlett.org/strategy/open-educational-resources/
- 3. Free Software Foundation. (2008). GNU Free Documentation License. Retrieved from https://www.gnu.org/licenses/fdl.html
- 4. Copyleft Attitude. (2007). Free Art License 1.3. Retrieved from http://artlibre.org/licence/lal/en/
- 5. Free Software Foundation. (n.d.). What is copyleft? Retrieved from https://www.gnu.org/copyleft/copyleft.html
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.
